

11/1976

q FINAL KEPET.

REPORT ON CONTRACT F05611-76-90203 C

JUN 1 6 1980

Volume II of II

15) FØ5611-76-9Ø2Ø3

12 78

THE COPY PURILIBLE TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

This document has been approved for public release and sale; its distribution is unlimited.

Prepared for F. 2000

Cupt. D. R. Stevens, Chief Inertial Guidance Research Division The Frank J. Seiler Research Laboratory USAF Academy, Colorado 80840 Prepared by:

Dr G. J. Grimes
Kapper Systems, Inc. N.
140s Potter Drive

1409 Potter Drive Colorado Springs, Colorado 60909

6 11,006 Am

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

TABLE OF CONTENTS

		Page
1.	A BRIEF SUMMARY OF THE DIGITAL FILTER WORK	1 .
2.	PROJECT IDENTIFICATION	4
3.	ANALYSIS FOR FILTER STABILITY AND FORMULATION OF DESIRED TRANSFER FUNCTION	, 7
4.	DIGITAL FILTERS AND PHASE RELATIONSHIPS	1.0
5.	RECURSIVE FILTERS	13
6.	HARDWARE SYSTEM CONFIGURATION	18
7.	VERIFICATION OF THE DIGITAL FILTER EXECUTION PROGRAM	20
8.	THE VARIABLE TIME DELAY FILTERS	22
9.	THE INFINITE IMPULSE RESPONSE FILTERS	30
10.	THE FIR COEFFICIENT SYNTHESIS AND EXECUTION PROGRAMS	33
11.	THE FIR FILTER RESULTS	46 A08
12.	RESULTS OF THE INFINITE IMPULSE RESPONSE FILTER COEFFICIENT SYNTESIS PROGRAM	53
13.	VERIFICATION OF THE INFINITE IMPULSE RESPONSE FILTERS IN REAL-TIME	72
14.	SUMMARY OF ISOPAD DIGITAL FILTER WORK FOR ISOPAD CONTROL	82
15.	THE MOST SIGNIFICANT TECHNICAL CONTRIBUTIONS	86
16.	SUMMARY OF THE PUBLICATIONS	88
17.	SUMMARY OF THE PATENT PROCEEDINGS ON THE FIBER OPTIC SLIP RINGS	89
APPE	NDIX A: SUMMARY OF SOFTWARE	90
APPE	NDIX B: PROGRAM LISTING: UNOUT.FTN	93
APPE	NDIX C: PROGRAM LISTING: GOOD.FTN	96
APPE	NDIX D: PROGRAM LISTING: ASKFIR.FTN	100
APPE	NDIN E: PROGRAM LISTING: DELAY13.FTM	113
APPE	ADIX F: PROGRAM LISTING: BAD.FIN, BAND.FIN, NINE9.FIN, DIFLEMENT	117

TABLE OF CONTENTS

APPENDIX G: PROGRAM LISTING: CASES.FTN, CASESF.FTN, HONEY.FTN, and BUTTER.FTN

APPENDIX H: THE DATEL 256 DRIVER PROGRAM: IDAC.MAC

143

SECTION 13

VERIFICATION OF THE INFINITE IMPULSE RESPONSE FILTERS IN REAL-TIME

Two sets of data are presented here. Neither of them show the expected results, presumably because of the fixed time delay going through the filter.

Figure 13-1 shows the amplitude and phase portions of the transfer functions for the lowpass Butterworth filter. The magnitude portion of the transfer function is similar to that produced by the Burroughs 6700, but the phase portion of the transfer function does not agree at all. It resembles what might be expected from a lowpass analog filter.

Figures 13-2 and 13-3 show the results for the bandpass Chebychev filter. Here again, the results were different from what we expected after studying the Burroughs 6700 plots. Hopefully longer tests will verify the Burroughs 6700 results.

Figure 13-1 Transfer Function for Lowpass Butterworth.

Figure 13-2 Transfer Function Magnitude for Bandpass Chebyshev.

Figure 13-3 Transfer Function Phase for Chebyshev Bandpass.

Perhaps the most interesting of the IIR filters tested was a 0.015-0.045 are notch filter. Figure 13-4 shows the notch found in the overnight test. The notch did not appear in the short test in Figure 13-5.

The results shown in Figures 13-6 and 13-7 are remarkable. This was a long overnight test of the same 0.015 - 0.045 Hz IIR notch filter. The linear phase lead was the result of the Biomation anti-aliasing filter being used in a passive mode (bf). The lead is real. What is perhaps even more remarkable, although the data is not presented here, is that when the input and output filters were reversed, the result was a flat transfer function with a slight amount of lag, but not nearly so much lead as is shown in Figure 13-6. This shows that digital and passive analog filters may be used together to achieve remarkable (linear phase lead!) results. It also shows the nonlinear effects of using the two types of filters together. They obviously do not commute.

Figure 13-4. Overnight Test of 0.015 Hz to 0.045 Hz notch filter.

Figure 13-5. IIR Notch Filter, 0.015-0.045 Hz, Short (40 min.) run.

Figure 13-6. This remarkable linear phase lead was the result of the two-channel Biomation filter being used as a passive analog filter. The filter was the same IIR notch filter shown in Figures 13-4 and 13-5.

THE MENT OF THE PROPERTY OF TH

Figure 13-7. This is the amplitude data of Figure 13-6 shown in log form.

Optical slip rings are totally compatible with the modern laboratory trends toward digitizing the data as close to the source as possible and using automated mini-computer data acquisition systems.

The microprocessor based digital filter work for isopad seismic vibration control is summarized in this report.

SECTION 14

SUMMARY OF ISOPAD DIGITAL FILTER WORK FOR ISOPAD CONTROL

Using the four techniques as summarized below we were able to identify various types of digital filters which show significant promise for isopad control. These four techniques were:

- 1. Recursive digital filters analogous to common analog filters.
- 2. Variable time delay filters.
- 3. Finite Impulse Response Filters.
- 4. Infinite impulse response filters.

of these four approaches the last was by far the most successful. These were the filters designed using the MAC/FIL digital filter design software package from Agbabian Associates. It is perhaps somewhat ironic because infinite impulse response filters have a reputation for having wildly fluctuating and quite unpredictable phase transfer funcitons. I say reputation because very little information is available either from the literature or from those familiar with digital filters. It was found, though, that these digital filters had nice ramps of phase lead which would be ideal for isopad control.

Reviewing the results of the other types of filters, the recursive digital filters yielded results which were very similar as expected to the analog filters of the same difference equations. Also as expected, they producted the predictable lag of the same magnitude as the corresponding analog filters. This was predicted and served to verify the digital filter execution programs, which was the intended result of these programs. These filters also yielded valuable information relative to the highest speed that we could expect a digital filter to be executed in real time using the pdp11/45 computer.

The "raw" digital filter execution program, which actually consists of the FORTRAN execution program configured to put out exactly the same value to the Datel 256 as it reads from the LPS 11 in the fastest manner possible with no arithmetic manipulations or filtering, the IDAC.MAC, the assembly language Datel 256 driver, would run at about a 113 Hz sample rate. With a very simple digital filter, such as a simple recursive digital filter which only simulates a simple one-stage passive RC filter, the program runs at about 100 Hz. This speed is really not adequate for many applications for the isopad controller.

In particular, since the frequency range of most interest for isopad control is the range from 1 Hz to 20 Hz, this makes a very difficult situation, especially when lead is required. Suppose at 20 Hz we have a minimum time delay between sample in and control signal out of 10 milliseconds. This is an almost insurmountable handicap when lead is desired. For this reason we were limited to test the filters usually at a maximum sample rate of 1 Hz. This was done with the idea that, while the filter execution program could not be made more efficient in the way the FORTRAN code was compiled to object code by the optimized compiler by writing an assembly language program, perhaps the sampling could be scheduled in such a way that required much less software overhead. The sampling mode using the LPS software to schedule the samples was chosen because it offered most accurate sample spacing. Sample spacing uniformity is absolutely critical in digital filtering because any "jitter" can cause a very spurious frequency response. But, the LPS software uses a large amount of processor time relative to the time needed to execute the filter itself. The slowed sample rates were advantageous in that tests could be run without interfering with the multi-user aspects of the pdpl1/45 system, but they made the filters more or less useless for real-time applications.

The variable time delay filters were also found to be of little value. The predicted lead turned out to be variable magnitudes of lag because the delay through the filter at reasonable control sampling frequencies was greater than the variable delay effect of the filter. These filters proved to be useful in producing all sorts of nonlinear sorts of lag filters of almost any rolloff and phase plot shape required, but were of little use for the real-time applications.

The finite impulse response (FIR) filters proved to be very stable, and the FIR filter coefficient synthesis program was successfully run on the pdp 11/45, which was never accomplished for reasons to be discussed with the IIR filter coefficient synthesis program. Suitable lead in real time was never realized with this class of filters. The phase response was smooth and linear as expected, but in real time the result was always lag.

The most surprizing result of the FIR filter test program is that, like the IIR filters, the FIR filters produced unexpected results when used in conjunction or series with analog filters. Even when an ordinary analog lowpass filter was used to smooth the stairstep output to the Datel 256 digital to analog converter channel with a one-pole filter, the phase was made more positive

than without the filter and the phase roll-off was far more gradual. This was true even when a 200 Hz analog filter was used, which was far above the active range of the filter. Even though lead was never achieved, this is one of the several examples of the combination of analog and digital filters where an unexpected results was obtained from the digital time series analysis.

The results of the infinite impulse response filters were perhaps the most impressive.

The results of testing the infinite response (IIR) filters generated from the MAC/FIL software package can be summarized very easily. The phase responses obtained in the simulated runs were much better than could have been hoped for, and the phase responses obtained in the real-time tests with the pdpl1/45 control loop and the Time/Data fourier analyzer were very disappointing.

Even filters like a lowpass Butterworth filter, which would be naturally stable under all conditions showed lead. The lead was not only positive with respect to the 0° line, but actually had a positive slope over nearly two decades of frequency. This of course gave us high hopes of building a real-time controller, but because of delays through the processor or some unknown effect, the phase was never realized in real-time.

Another very interesting IIR filter was the bandpass Chebychev. This filter would be useful in giving gain to a particular band remote from an isopad resonance frequency. It gives nearly linear phase lead over nearly two decades of frequency. Used in conjunction with analog filters, this filter gave much promise, but again, its benefits were never realized in real time.

One of the filters which was of considerable interest because of the work of Emil Broderson was the notch filter. Although the phase naturally exhibits a sharp transition near the notch frequency, the phase usually exhibits lead before the amplitude falls off. Then, by using a sharp lowpass filter in conjunction with the filter, the lead can be utilized in a servo in a very beneficial sense. This was true of the analog filter that Emil designed and built. From the MAC/FIL simulation it appeared that this might be the case for the digital filter as well. This was never realized in real time, except in one case in which the two channels of the Biomation anti-aliasing filter were used as passive filters in a special configuration described in the past chapter.

This result was unique and showed that it was possible to utilize analog and digital filters together to get more lead than you would expect from either of them, or even the sum of their leads, taken individually. In particular, even when a digital filter with lead was used with a low pass analog filter with lag, the lead of the digital filter could be enhanced if the cutoff frequency of the analog filter was sufficiently above the Nyquist folding frequency of the digital filter. While we never found an analytical explanation for this, it was found to be very repeatable using the Time/Data fourier analyzer.

One of the frightening things that worried us at the onset of this project was that experts warned us that in order to get lead from a digital filter, we would probably have to use an infinite impulse response filter and that the phase transfer function of this class of filters would probably have too many wild fluctuations to be of any value whatsoever in a closed loop servo application and could probably be used to advantage in a post-processor configuration. This proved to be only half true. The infinite impulse response filters did indeed prove to be the only class of filters we implemented that showed promising phase characteristics. However, it is clearly not true that their phase transfer function lots show any wild fluctuations that would make them unsuitable for closed-loop servo applications

SECTION 15

THE MOST SIGNIFICANT TECHNICAL CONTRIBUTIONS

The major accomplishments of this work period can be briefly summarized as follows:

- 1. The invention, design, development, construction of a prototype, and testing of an electronic fiber optics communication system for bipolar analog signals of data acquisition quality.
- 2. The invention, development, design, construction of a prototype assembly, testing, and evaluation of a fiber optic slip ring.
- 3. The application of linear phase design techniques and finite impluse response (FIR) discrete-time or digital filters to the isopad stabilization problem.

The analog fiber optics communication system has several unique features. Among these are very low parts count and compactness, and more importantly, a novel encoding scheme. The encoding scheme utilizes a combination of pulsewidth-modulation (PWM) and voltage-to-frequency-to-voltage (V/F/V) conversion to double the information transmittable through a fiber optic communication of a specified pulse repetition rate. This is especially important in the case of laser diodes since the pulse repetition rate is limited in most cases to frequencies less than the maximum repetition rates of commercially available voltage to frequency converters in integrated circuit form.

The high resolution fiber optics communications system (FOCS) uses the above techniques to reconstruct a ±10 volt analog output signal from an identical ±10 volt analog input signal.

Data collected on a very general V/F/V system is presented to give the degligner information on V/F/V system dynamics at frequencies much higher than those considered to be in the V/F/V's system's useful range for data acquisition and communication purposes. This data shows that the V/F/V process may be seeful for servo loop applications at much higher frequencies than it is for fittal acquisition and data communication applications.

The data on this system has proved to be of much interest and we have had tumber of requests for information from both military and civilian organiza-

tions on how to determine the effective data rates on voltage-to-frequency-to-voltage systems and how to compare the informational content of the pulses to those of a digital analog-to-digital conversion and transmission system. The loop dynamics of this system are obviously complex and nearly impossible to analyze using a purely mathematical approach. This is why our results have proven to be so valuable. We apparently have the only actual data since we are apparently the only group which has had access to a Fourier analyzer while testing avoltage-to-frequency-to-voltage system. By using the digital time series analysis techniques of this device (primarily correlation, coherence, and transfer function analysis) we have some unique data on the performance of this very popular class of devices.

Our work on optical slip rings has been very well received, partially because of the success of our prototype optical slip ring assembly and particularly because of the well known shortcomings of mechanical slip rings or commutators as they are sometimes called. The mechanical slip rings commonly used to collect data from rotating test fixtures suffer from such problems as friction, backlash, continuity failures, wear-limited lifetime, noise, the need for precious metals, and expensive and time-consuming preventive maintenance. This report discusses a multi-channel fiber optic slip ring assembly which avoids these problems. The assembly is interfaced with digital systems and a custom designed analog-in, analog-out high resolution fiber optics data communication system to provide the control and data acquisition functions during automated tests of inertial guidance components. We also did research and reported on design tradeoffs between multiplexing and providing additional optical channels for milti-channel operation and explored these alternatives relative to currently available electronic, electro-optic, and optical components.

The research and development effort on the mechanical slip rings shows that optical slip rings are a practical alternative to mechanical slip rings and offer cost and performance advantages for signal transmission using the alternated componets. Mechanical and electrical isolation are among the alternateges to be gained. Mechanical and optical slip rings can complement one that if mechanical slip rings are used for power transmission and optical slip rings are used for signal transmission.

SECTION 16

SUMMARY OF THE PUBLICATIONS

Three publications have resulted from our research in collaboration with FJSRL personnel in the areas of analog fiber optics data communications and the fiber optic slip rings. Two of them have been published and the third is now pending publication. The two that have been published have generated enthusiastic responses from both civilian and military agencies.

The references to these publicaions are as follows:

- Grimes, G. J. and Stevens, D. R. "A High Resolution Analog Fiber Optics Data Communications System," <u>Proceedings of the SPIE</u>, Vol. 95, Modern Utilization of Infrared Technology II, 1976.
- 2. Grimes, G. J., Monaco, S. J., and Stevens, D. R. "Fiber Optic Slip Rings for Totating Test Fixture Data Acquisition," <u>Proceedings of the 23rd International Instrumentation Symposium</u>, <u>Instrumentation</u> in in the Aerospace Industry, <u>Proceedings of the ISA (Instrument Society of America)</u>, 301. 23, 1977.
- 3. Grimes, G. J. and Stevens, D. R. "A High Resolution Analog Fiber Optics Data Communications System," to be published (accepted for publication) in Optical Engineering, the technical journal of the Society of Photo-Optical Instrumentation Engineers (SPIE).

SECTION 17

SUMMARY OF THE PATENT PROCEEDINGS ON THE FIBER OPTIC SLIP RINGS

Kappa Systems, Inc., is currently working with a law firm to file a patent on the fiber optic slip ring developed under this contract.

The search has been completed and there are no similar devices patented. Also, the law firm has verified that the device is patentable. We are currently working with Mr. Gene W. Stockman and Mr. Scott F. Partridge at the following law firm:

Schuyler, Birch, Swindler, McKie and Beckett One Thousand Connecticut Avenue
Washington, D.C. 20036
(202) 296-5500

APPENDIX A

SUMMARY OF SOFTWARE

Two major types of programs were used in this effort: the filter coefficient synthesis programs and the real-time filter execution programs. The filter coefficient synthesis programs are large FORTRAN programs which calculate filter coefficients for a filter given parameters such as the corner frequencies and the weights for each band. The digital filter execution programs are small FORTRAN programs which call an assembly language driver to handle the D/A output.

The filter coefficient synthesis programs used were of two types. These were:

- 1. A Finite Impulse Response (FIR) filter synthesis program.
- 2. An infinite impulse response (IIR) filter synthesis program.

The FIR synthesis program was taken from Theory and Applications of Digital Signal Processing by Lawrence R. Rabiner, Prentice Hall, 1975. This program was adjusted to run in an interactive mode in the 11/45. A listing of this program is shown in Appendix D.

The IIR program used was one from the MAC/FIL software package. This package was purchased in 1974 for DFEE (Dean of Faculty: Department of Electrical Engineering) with about \$5000 of FJSRL funds. This package consists of three programs:

- 1. MAC/FIL: generaces coefficients for lowpass, highpass, bandpass, and band-reject filters of many kinds, including Butterworth. Chebychev types I and II, and elliptic.
- 2. MAC/APX: generates filter parameters from specified gain functions input to it. Thus, it can be employed to generate matched filters, Weiner-Hopf filters, or any type of filter defined by its amplitude which cannot be generated by MAC/FIL.
- 3. MAC/SIM: simulates digital filters implemented in fixed point arithmetic. Through its use many hardware design problems can be answered without having to build special purpose devices.

The IIR filters reported on here were generated through the use of MAC/FIL.

This program required numerous modifications to run properly. Most of these

Most of these

The IIR filters reported on here were generated through the use of MAC/FIL.

This program required numerous modifications to run properly. Most of these

The interported on here were generated through the use of MAC/FIL.

The MAC/APX program was never successfully run. Extensive modifications will probably be required to run this program.

The MAC/SIM program was not needed since we could easily test the filter response with the time/data fast fourier analyzer.

The MAC/FIL program was used exclusively on the Burroughs 6700 at the Computer Center.

The MAC/FIL, MAC/APX, and MAC/SIM programs are not reproduced in the appendices since the copyright of the software might be violated by this procedure.

The digital filter execution programs are very similar except for the actual filtering part which calculates the output from the appropriate sum of the products. The filter execution programs are all self contained except for the I/O drivers and handlers. Although it would have been more convenient to make the filter execution program be the same in all cases and merely call a subroutine to execute a specific filter, the nonmodular approach was taken to improve filter performance. The subroutine call was found to just add software overhead and increase the time delay through the filter.

The filter execution program called INOUT, FTN simply puts the input value to the DAC of the Datel 256 system with the absolute minimum time delay of the filter. The filter acts as a simple passive lowpass filter for frequencies of a sizeable fraction of the sample frequency. The program GOOD.FTN is a minor modification of INOUT.FTN to run the digital equivalent of simple one-stage passive RC filter in an interactive mode.

The programs which execute the variable time delay filters are very similar. An example is shown in Appendix E.

The programs which execute the FIR filters include the examples BAD.FTN, BAND.FTN, NINE9.FTN, and DIFF32.FTN shown in Appendix F.

The IIR filter execution programs include the programs CASE8.FTN, CASE8F.FTN, HONEYF.FTN, and BUTTER.FTN shown in Appendix G.

The assembly language driven IDAC.MAC is shown in Appendix H.

A list of all the programs included in the following appendices follows:

- INOUT.FIN Program to test response of system with no filter.
- 2. GOOD.FIN One-stage passive RC filter (interactive).
- 3. ASKFIR.FTN FIR coefficient synthesis program from Raginer and Gold. Modified to run in an interactive mode on pdp 11/45.
- A. BAD.FTN Linear phase FIR program, N = 9.
- 5. NINE9.FTN Linear phase FIR filter execution program, N = 9.
- 6. DIFF32.FTN Linear phase FIR differentiator, V = 32. Symmetrical filter.
- 7. BAND.FTN Fast execution bandpass linear phase FIR filter execution program, N = 32, (for N even, coefficients).
- 8. DELAY13.FTN Variable time delay filter. Unity gains for all frequencies. Time delay is pregressively less for higher frequencies. Interactive.
- 9. CASE8.FTN IIR filter execution program for 8 recursive and 9 non-recursive coefficients. N = 8. 0.015 Nz to 0.045 Hz bandpass. H's are nonsymmetrical; G's are symmetrical.
- 10. CASE8F.FTN IIR execution program for N = 8.
- 11. HONEYF.FTN IIR filter execution program N = 5, nonsymmetrical coefficients.
- 12. BUTTER.FTN IIR filter execution program with coefficients for lowpass Butterworth filter. N=5. One nonrecursive and four recursive weights.
- 13. IDAC.MAC The assembly driver for the Datel 256 system.
- 14. NOTCH.FTN IIR execution program with 6 recursive and 7 nonrecursive weights.
- Program written by Capt. Lind to exercise the Datel 256 system by writing a digital triangle wave to it.

APPENDIX B

Program Listing: INOUT.FTN

This program tests the system response with no filtering done.

CORTRAL	y IV-FL	_US V02-51
POUT.F	TH	/TR:BLOCKS/WR
		BANGARAN INICARA INOTOANA INOANA
1660		DIMENSION IRUF(6), IRATE(2), ISB(2)
.:002	_	COMMON IRATE, IDATA, Y, FREQ
	C	A LONG OF ORDERS A JOS OF PROPERTY AND A STATE OF THE PROP
1993		WRITE (5,80)
194	80	FORMAT('\$ ENTER LOW PASS CUTOFF FREQUENCY IN HERTZ ')
.005		READ (5,81) FREQ
3006	81	FORMAT(F4.2)
{	C	DEAD IN CAMBLE DEDIOD IN MILL ICECOURCE
	C	READ IN SAMPLE PERIOD IN MILLISECONDS
0007	20	WRITE (5,30)
0008	30	FORMAT('\$ENTER SAMPLE PERIOD IN MILLISECONDS')
0009	31	READ (5.31) IRATE(2)
6916		FORMAT (16) INITIALIZE FILTER FOR SUBROUTINE CUTOFF
	С	Y=0.0
1100	С	1-0.0
1	C	INITIALIZE LABORATORY PERIPHERAL SYSTEM
0012	C	CALL ASLSLN (1.15B)
1012	С	ORE HOLDER (1910b)
	č	DESIGNATE OUTPUT DAC CHANNEL FOR DATEL 256
2013	Ū	ICHAN=0
1 '3.3	ε	
1	Č	DESIGNATE REGISTER FOR LPS11 FLAG SET
3914		IEFN=7
	С	
l	С	SPECIFY TIME BETWEEN SAMPLES IN MILLISECONDS
l	C	IRATE(2)=50
	C	
l	C	PUT LPS11 RTS ROUTINE IN MILLISECOND SAMPLING MODE
₹015	_	IRATE(1)=2
	C	THISTON OUNDINGSHOUD COMMITTEE
2016	C	INITIATE SYNCHRONOUS SAFFLING
8916	90	CALL RTS(IBUF.6.0, IRATE. IEFN.0.1, ISB)
0017	С	INDV-5
8018	10	INDX=5 CALL WAITFR(IEFN)
6319	15	CALL CLREF(IEFH)
9929		SIGMA=IBUF(INDX)
	С	CONTROL OF TAXABLE
	ξ	SCALE IN VOLTS
6031	_	IDATA=10000.*(SIGMA/2048.)-10000.
	C	
	C	CALL FILTEP ROUTINE
9922		CALL CUTOFF
	C	
	С	CALL LACTI LER DISPLAY ROUTINE
5653	_	CALL LED(IDATA)
	С	•

RTRAN IV-PLUS V02-51 11:13:01 28-APR-78 PAGE 2 PROUT.FIN /TR: DLOCKS/WR CALL ROUTINE TO OUTPUT RESULT TO DATEL 256 C CALL IDAC (IDATA, ICHAN) 5024 C C ADJUST POINTERS FOR LPS11 AND CLEAR HALF BUFFER FOR NEXT SAMPLE C CALL ADJLPS(IBUF.1) 0025 C INDX=INDX+1 6026 C CHECK STATUS REGISTER FOR PROPER I/O C AND TERMINATE IF STATUS NOT CORRECT C IF (INDX.GT.6) INDX=5 0027 IF (198(2).GE.1) 60 TO 15 8928 IF (ISB(1).NE.0) GO TO 95 0053 GO TO 10 8930 95 CONTINUE 5331 С C IF PROGRAM CRASHES PRINT STATUS ON WAY OUT WRITE (5,200) ISB(1), ISB(2), IDATA, IBUF(INDX) 0932 ~333 200 FCRHAT(4112) 8034 END TROGRAM SECTIONS **ATTRIBUTES** HAME SIZE 000524 RW. I. CON. LCL SCODE 1 170 SPDATA 999928 8 RW. D. COH. LCL 73 RULDL COTTLECT \$1191A 000222 01 3032 RIU, D. COH, LCL SVARS 13 .\$\$\$\$. 808816 RW. D. O'M. GBL TOTAL SPACE ALLOCATED = 001036 271 · INOUT = INOUT

APPENDIX C

Program Listing: GOOD.FTN

This is a simple digital filter which is the digital analogue of a simple one-stage passive RC filter which runs on the pdp 11/45 in an interactive mode.

	∵RTRAN IV-PLUS V02-51 11:10:38 28-APR-78 PAGE I GOOD.FTN ∕TR:6LOCKS/WR					
6901	_		DIMENSION IBUF(6). IRATE(2). ISB(2)			
	00000		THIS PPOGRAM SYNTHESIZES AND EXECUTES A FIRST ORDER RECURSIVE FILTER CORRESPONDING TO A ONE-STAGE PASSIVE RC FILTER			
	,0000000		THE ALGORITHM ON WHICH THIS FILTER IS BASED IS VALID ONLY WHEN THE TIME CONSTANT IS MUCH GREATER THAN THE PERIOD BETWEEN SAMPLES. THE TIME CONSTANT SHOULD BE AT LEAST THREE TIMES AS LARGE AS THE SAMPLE PERIOD			
6002 0003 0004 6005			WRITE(5.80) FORMAT(1\$ ENTER LOW PASS CUTOFF FREQUENCY IN HERTZ-FLT.PT. ') READ (5.81) FREO FORMAT(F4.2)			
0006 0007 0008 0009	C		RJAD IN SAMPLE PERIOD IN MILLISECONDS WPITE (5:30) FORMAT('\$ ENTER SAMPLE PERIOD IN MILLISECONDS-INTEGER ') READ (5:31) IRATE(2) FORMAT (16)			
	0000		INITIALIZE FILTER			
9311 2311	С		Y=0.0 INITIALIZE LABORATORY PERIPHERAL SYSTEM CALL ASLSLN (1.158)			
E012	C		DESIGNATE OUTPUT DAG CHANNEL FOR DATEL 256 ICHAN=0			
0013	0		DESIGNATE REGISTER FOR LOSIT FLAS SET TEFN=7			
C014	c		PUT LPS11 RTS ROUTINE IN MILLISECOND SAMPLING MODE IRATE(1)=2			
6015	0		CALCULATE RC TIME CONSTANT IN SECONDS RC=1./(FREQ*6.28)			
0016	0 0		CALCULATE SAMPLE INTERVAL IN SECONDS ST=FLOAT(IRATE(2))/1800.			

	FORTRAN IV-PLUS VO2-51 11:10:38 20-APR-78 PAGE 2 GOOD.FTN /TR:BLOCKS/WR					
0917 2318	C	CALCULATE FILTOR PARAMETER TCON=ST/RC TCONC=1TCON				
	00000	TEST TO SEE IF FILTER WILL BE STABLE; IF UNSTABLE PROGRAM WILL TERMINATE AND PRINT 'UNSTABLE- SAMPLE RATE TOO LOW FOR TIME CONSTANT'				
6019 6020 6021 6022 6023 6024	201 555 C	IF (TCON.GE.1) GO TO 301 GO TO 555 WRITE(5,201) FORMAT(' UMSTABLE-SAMPLE RATE TOO SLOW FOR TIME CONSTANT') GO TO 195 CONTINUE				
0025	C 90 C	INITIATE SYNCHROHOUS SAIPLING CALL PTS(IBUF,6,0,IRATE,IEFN,0,1,ISB)				
0026 0027 0028 0029	10 15	INDX=5 CALL WAITER(IEFN) CALL CLREF(IEFN) SIGNA=IBUF(IMOX)				
0030	0 0	SCALE IN VOLTS IDATA=10000.*(SIGMA/2048.)-10000. BEGIN FILTEP POUTINE				
0031 0032	С	Y=TCOHC*Y+TCOM: IVATA IDATO=Y CALL LPS11 LED DISPLAY ROUTINE				
0033 0034	c c	CALL LED(IDATA) CALL ROUTINE TO OUTPUT PESULT TO DATEL 256 CALL IDAC(ICHAR, IDATA)				
6035	0 0	ADJUST POINTERS FOR LPS!! AND CLEAR HALF BUFFEP FOR NEXT SAMPLE CALL ADJLPS(IBUF,!)				
6036	0	INDX=INDX+1 CHECK STATUS REGISTER FOR PROPER I/O AND TERMINATE IF STATUS NOT CORRECT				
6837 9338		IF (INPM.GT.6) INDM=5 IF (ISB(2).GE.1) GO TO 19				

```
ATRAN IV-PLUS V02-51
                                   11:10:38
                                                28-222-78
                                                                      PAGE 3
                 /TR:BLOCKS/WR
  MD.FTN
              IF (ISB(1).NE.0) GO TO 95
1.39
               GO TO 10
i - ::0
         95
               CONTINUE
 7.11
         C
               IF PROGRAM CRASHES PRINT STATUS ON WAY OUT
               WRITE (5,200) ISB(1), ISB(2), IDATA, ISUT (INDX)
1 13 12
         200
               FORMAT(4112)
े ५४४३
: 1,44
         195
               CONTINUE
               END
12.45
 #POGRAM SECTIONS
             SIZE
 .HAME
                                   ATTP. ISUTES
 #ODE1
        000676
                  223
                                   RW. I. CON. LCL
                                  RW.D.CON.LCL
 STEATH.
        000024
                  10
 strata.
        000330
                  103
                                  RW.D.CON.LCL
        000070
 SAIGS
                   28
                                  RW. D. COH. LCL
 "OTAL SPACE ALLOCATED = 001342
                                    369
 . UDD=GOOD
```

APPENDIX D

Program Listing: ASKFIR.FTN

This is the FIR coefficient synthesis program from Rabiner and Gold as modified to run in an interactive manner on the pdp 11/45.

```
COTT ! PIZ.AD.DEV.X.Y.GRID.DES.WT.ALPHA.IEXT.HFCNS.NGRID
      DIMENSION TEXT(66), PD(66), M(66), Y(66), ALPHA(65)
      DIMENSION H(66)
      DIFFESION DES(1045), GPID(1045), WT(1045)
      DEPENSION EDGE(20), FX(10), WTX(19), DEVIAT(10)
      DOUGLE PRECISION PIZ.PI
      DUUSLE PRECISION AD, DEV, X, Y
      PI2=6.733185307179586
      P1=3.141592653489793
      THIS PROGRAMM IS SET UP FOR A MAXIMUM LENGTH OF 128, BUT
      THIS UPPER LIMIT CAN BE CHANGED BY REDIFERSIONING THE
      ARRAYS IEXT, AD, ALPHA, X,Y, H TO BE NFM9X/2+2.
      THE ARRAYS DES. GRID. AND WT MUST DIMENSIONED
C
C
      16 (NFMaX/2+2)
      NFMAX=128
  100 CONTINUE
      JTYPE=0
       PROGRAM INPUT SECTION
      WRITE (5, 4390)
 4398 FORMAT(' ENTER FILTER LENGTH: TYPE OF FILTER: 1=MULTIPLE')
      WRITE (5,4397)
 4397 FORMAT( PASSBAND/STOPBAND, 2=DIFFERENTIATOR, 3=HILBERT')
      WRITE (5, 4396)
 4396 FORMAT(' TRANSFORM FILTER; NUMBER OF BANDS, AND GRID DENSITY')
C
      READ (5.4444) NFILT, JTYPE, NBANDS, LGRID
4444 FOPMAT(414)
      IF (NFILT.GT.NFMAX.OR.NFILT.LT.3) CALL ERROR
      IF (NBANDS.LE.0) NBANDS=1
C
      GRID DENSITY IS ASSUMED TO BE 16 UNLESS SPECIFIED
C
      OTHERWISE
      IF(LGRID.LE.O) LGRID=16
      JB=2#M5AMDS
      WRITE (5,4388)
4388 FORMAT( * ENTER BANDEDGES (FLOATING POINT) *)
      READ (5,3333) (EDGE(J),J=1,JB)
      WRITE (5,4387)
4387 FORMAT(' ENTER DESIRED FUNCTION FOR EACH BAND ')
      READ (5.3333) (FX(J).J=1.NSANDS)
      WPITE (5.4386)
4386 FORMAT( ENTER WEIGHT FUNCTION IN EACH BAND )
     READ (5.3333) (WTX(J), J=1.NB9MDS)
3/33 FORMAT(20F10.2)
     WRITE(5.4444) NFILT.JTYFE.NBANDS.LGRID
     WRITE(5,3333) (EDGE(J),J=1,JB)
     WPITE(5.3333) (FX(J), J=1, NBAHDS)
      WRITE(5.3333) (WTX(J), J=1.MBANDS)
      IF(JTYTE.E0.0) CALL EPROR
```

Program ASKFIR

```
MEG-1
      IF (JTYPE.EQ.1) NEG=0
      HODE HIF ILT/2
      NODD=NFILT-2*NODD
      HFCNS=HFILT/2
      IF (HODD.EQ.1.AND.NEG.EO.0) NFCHS=NFCHS+1
      SET UP THE DENSE GRID. THE NUMBER OF POINTS IN THE GRID
C
      IS (FILTER LENGTH + 1) MGRID DEHSITY/2
ε
      GRID(1) =EDGE(1)
      DELF=LGRID*NFCHS
      DELF=0.5/DELF
      IF (NEG.EQ.O) GO TO 135
      if (EDGE(1).LT.DELF) GRID(1)=DELF
  135 CONTINUE
      J=1
      L=I
      LBAND=1
  140 FUP=EDGE(L+1)
  145 TEMP=GRID(J)
      CALCULATE THE DESIRED MAGNITUDE RESPONSE AND THE WEIGHT
C
C
      FUNCTION OF THE GRID
      DES(J) *EFF(TEMP, FX, UTX, LBAND, JTYPE)
      WT(J) = WATE (TEMP. FX, WTX, LBAND, JTYPE)
      J=J+1
      GRID(J) = TENP+DELF
      IF(GRID(J).GT.FUP) GO TO 150
      GO TO 145
  150 GRID(J-1) =FUP
      DES(J-1) = EFF (FUP.FX, WTX, LBAND, JTYPE)
      WT(J-1) = WATE (FUP.FX, WTX, LEAND, JTYPE)
      LBAND-LBAND+1
      LFL+2
      WRITE(5,1000)
      WRITE (5.2765)
 2765 FORMAT(" HERE WE GO AGAIN")
      IF (LBAND.GT.NBANDS) GO TO 160
      GRID(J) =EDGE(L)
      GO TO 140
  160 NGRID=J-1
      IF (NEG. NE. NODD) GO TO 165
      IF (GRID(MGRID).GT.(0.5-DELF)) NGRID=NGRID-1
  165 CONTINUE
С
      SET UP A NEW APPROXIMATION PROBLEM WHICH IS EQUIVALENT
C
      TO THE ORIGINAL PROBLEM
      IF (NEG) 170.170,180
  170 IF (NUDD.EO.1) GO TO 200
      DO 175 J=1.NGRID
      CHANGE=DCOS(FI*GRID(T))
```

Program ASKFIR

```
DES(J) =DES(J) / CHANGE
 175 UT(J)=UT(J)*CHANGE
      GD TO 239
 180 IF (HODD.ED.1) 60 TO 190
      DO 185 J=1.NGPID
      CHRMGE=DSIN(PI#GRID(J))
      DESID =DES(J)/CHANGE
      GO TO 200
 185 WT(J)=WT(J)*CHANGE
 190 DO 195 J=1.NGRID
      CHANGE = DSIN(PI2 * GRID(J))
      DES(J) = DES(J) / CHANGE
 195 WT(J) =WT(J) *CHANGE
      INITIAL GUESS FOR THE EXTREMAL FREQUENCIES -- EQUALLY
      SPACED ALONG THE GRID
C
 289 TEMP=FLOAT(NGRID-1)/FLOAT(NFCNS)
      DO 210 J=1, NFCHS
 210 IEXT(J) = (J-1) *TEMP+1
      IEXT(NFCNS+1) = HGRID
      NMI = MFCHS-1
     NZ=HFCHS+1
C
     CALL THE REMEZ EXCHANGE ALGORITHM TO DO THE APPROXIMATION
C
     PROSLEM
      CALL PENEZ (EDGE. NBANDS)
1000 FORMAT(' HERE WE GO')
     WRITE (5, 1000)
Ç
     CALCULATE THE IMPULSE RESPONSE
      IF (MEG) 300.300.320
 300 IF (NODD.E0.0) GO TO 310
     DO 305 J=1,NM1
 305 H(J)=0.5#ALPHA(NZ-J)
     HIMFORS) = ALPHA(1)
      GO TO 359
 313 H(1)=0.25#ALPHA(NFCNS)
      DO 315 J=2,1111
 315 H(J)=0.25*(ALPHA(NZ-J)+ALPHA(NFCNS+2-J))
     H(NFCNS)=0.5%ALPHA(1)+0.25%ALPHA(2)
     GD TO 350
 320 IF (NODD.EQ.O) GO TO 330
     H(1)=0.25 YALPHA(NFCNS)
     H(2) = 0.25 \text{ PalpHa(NMI)}
     DO 325 J=3.Niii
 325 H(J)=0.25%(ALPHA(NZ-J)-ALPHA(NFCNS+3-J))
     H(NFCNS)=0.5%ALPHA(1)-0.25%ALPHA(3)
     0.6=(SM)H
      GO TO 350
 330 H(1)=0.25%PLPHA(HFCHS)
```

```
DO 335 J=2,4611
  357 F 30-8.25*(ALPHA(NZ-J)-ALPHA(NFCNS+2-J))
      HC: 'C'-3) =0.5*ALPHA(1)-0.25*ALPHA(2)
      UP: 5.1880)
C
C
      PROGRAM OUTPUT SECTION
C
 350 WRITE (6,360)
 360 FORMAT(141, 70(14*)//25%, FINITE IMPULSE RESPONSE (FIR)*/
     125%, LINEAR PHASE DIGITAL FILTER DESIGN'/
    225X, REMEZ EXCHANGE ALGORITHMY /)
      IF(JTYPE.EQ.1) WRITE (6,365)
 365 FORMAT(25%, BANDPASS FILTER //)
      IF(JTYPE.EQ.2) WRITE (6.370)
 370 FORMAT (25%, DIFFERENTIATOR //)
      IF(JTYME.E0.3) WRITE (6.375)
 375 FOPINT(25%, HILBERT TRANSFORMER')
      WRITE (6,378) NFILT
 379 FORMAT (15%." FILTER LENGTH = ".13/)
      WRITE (6.380)
 380 FOPMAT(15K.' ****** IMPULSE RESPONSE *******)
     DO 381 J=1.NFCNS
     K=NFILT+1-J
      IF (HEG.EQ.0) WRITE (6.382) J.H(J).K
      IF (NEG.EQ.1) WRITE (6,383) J.H(J),K
 381 CONTINUE
 382 FORMAT(28%, 'H(', 13,') = ',E15,8,' = H(',14,')')
 383 FORMAT(20%, 'H(',13,') = ',E15.8,' " -H(',14,')')
      IF (MEG.EU.1.AND.MODD.EU.1) WRITE (6,384) MZ
 384 FORMAT(20%, 'H(', I3,') = 0.8')
     DO 450 K=1.NBANDS.4
     KUP=K+3
     IF (I'UP.GT.NBANDS) KUP=NDANDS
     WRITE (6,385) (J.J=K.KUP)
 385 FORTHIT(/24X,4(' BAND',13,8X))
     URITO (6.390) (EDGE(2*J-1).J=K.KUP)
 390 FORMAT(2X.' LOWER BAND EDGE'.SF15.9)
     URITE(6,395) (EDGE(2*J),J=K,KUP)
 395 FORMAT(2X. ' UPPER BAND EDGE', 5F15.9)
     IF(JTYPE.NE.2) URITE (6.400) (FX(J).J=K.KUP)
 490 FORMAT(2X. * DESIRED VALUE* .2X.5F15.9)
     IF(JTYPE.EQ.2) WRITE (6.405) (FM(J), J=K, KUP)
 405 FCGMAT(2X. DESIRED SLOPE',2X,5F15.9)
     WRITE (6.410) (WTX(J),J=K,KKUP)
 410 FORMAT(2X.' WEIGHTING'.6X.5F15.9)
     DO 420 J=K,KUP
 420 DEVIAT(J) = DEVANTX(J)
     WRITE(6,425) (DEVIAT(J), J=K, KUP)
 425 FORMATICAL! DEVIATION .6X.5F15.9)
     IF(JTYPE.NE.1) GO TO 450
     DO 430 J=K,KUP
 430 DEVIAT(J)=20.0:ALGG10(DEVIAT(J))
     WPITE (6,435) (DEVIAT(J),J=K,KUP)
 435 FORMAT(2X. ' DEVIATION IN D8', 5F15.9)
```

```
450 CONTINUE
      V71TE (6,455) (GRID(IEXT(I)), J=1,NZ)
  455 FARMAT(/2%.1 EMTREMAL FREQUENCIES1/(2X.5F12.7))
      WATER (6,460)
  450 F 1:://ATC/1X.70 (1H/b)/1H1)
С
      IF (HFILT.HE.0) GO TO 100
      STOP
      E!!D
      FUNCTION EFF (TEITP.FX.WTX.LEAND.JTYPE)
      FUNCTION TO CALCULATE THE DESIRED MAGNITUDE RESPONSE
C
      AS A FUNCTION OF FREQUENCY.
      DIMENSION FX(5). WTX(5)
      IF (JTYPE.E0.2) GO TO 1
      EFF=FX(LBAND)
      RETURN
    1 EFF=FX(LBAND) *TEMP
      RETURN
      END
C
      FUNCTION WATE (TEMP.FX.WTX.LBAND.JTYPE)
C
      FUNCTION TO CALCULATE THE WEIGHT FUNCTION AS A
      FUNCTION OF FREQUENCY.
      DIMENSION FX(5). WTX(5)
      IF(JTYPE.EQ.2) GO TO 1
      WATE #UTX(LEAHD)
      RETURN
    1 IF(FX(LEAND).LT.0.0001) GO TO.2
      UATE FUTX (LBAHD) / TEMP
      RETURN
    2 WATE=UTX(LBAND)
      RETURH
      END
      SUBROUTINE ERROR
      WRITE (6.1)
    STOP
      END
С
      SUBROUTINE REMEZ(EDGE_NBANDS)
C
C
      COMIDN PIZ.AD.DEV.X.Y.GRID.DES.WT.ALPHA.IENT.NFCNS.NGRID
```

```
DIMENSION EDGE (20)
    DIMENSION TEXT(66), AD(66), ALPHA(85), X(66), Y(66)
     DIMENSION DES(1945), GRID(1945), UT(1945)
     DIMENSION A(66),P(65),0(65)
    DOUBLE PRECISION P12. DHUM. DDEN. DTEFF. A. P. Q
    DOUBLE PRECISION AD. DEV.X.Y
     ITRNAX=200
    DEVL=-1.0
    NZ=MFCNS+1
    WRITE (5,222)
222 FOR ATC' STARTING REMEZ')
    NZZ "NFCNS+2
    NITER-0
100 CONTINUE
    IEXT(NZZ) =NGR ID+1
    NITER=HITER+1
    IF (NITER.GT. ITEMAX) GO TO 400
    DO 110 J=1,NZ
    DTEMP#GRID(IEXT(J))
    DITEMP=DCOS (DTEMP +P12)
110 X(J) "DTEMP
    JET=(NFCNS-1)/15+1
    DO 120 J=1.NZ
120 AD(J)=D(J.NZ.JET)
    DHUI1=0.0
    DDEN=0.0
    K=1
    DO 130 J=1.NZ
    L=IEXT(J)
    DTEMP=AD(J)*DES(L)
    DHUM-DHUM+DTEMP
    CL) TUN(L) CRESI=SITETO
    DDEH = DDEH + DTEMP
130 K=-K
    DEV=DHUM/DDEN
    IF (DEV.GT.0.0) NU=-1
    DEV=-NU*DEV
    K=NU
    DO 140 J=1.NZ
    L=IEXT(J)
    DTENP=K*DEV/WT(L)
    Y(J) = DES(L) + DTEMP
140 K=-K
    WR!TE(5,799)
799 FORMET(' REMEZ CHECKPOINT 2')
    IF(DEV.GE.DEVL) GO TO 150
    CALL DUCH
    GO TO 400
150 DEVL - DEV
    JCHNGE=0
    K1=IEXT(1)
```

Program ASKFIR

```
お記=IEXT(NZ)
      KLO:J=0
      HUT=-HU
      J=1
      SEAPCH FOR THE EXTREMAL FREQUENCIES OF THE BEST
C
C
      APPROXIMATION
  200 IF (J.EQ.NZZ) YNZ=COMP
      IF(J.GE.NZZ) GO TO 300
      KUP=IEXT(J+1)
      L=IEXT(J)+1
      TUH-=TUH
      IF(J.EQ.2) YI=COMP
      COMPFLEY
      IF(L.GE.KUP) GO TO 220
      UP ITE (5, 596)
 596 FORMAT(' WE GOT TO HERE')
      ERR=GEE (L.NZ)
      EPR=(ERR-DES(L))*WT(L)
      DTEMP=HUTHERR-COMP
      URITE(5,8888)ERR, DES(L), UT(L), COMP, DTEMP, NUT, GGE(L, NZ)
8888 FORMAT(5F10.4,18,F10.4)
      IF(DTEMP.LE.0.0) GO TO 220
      COMP=HUT*ERR
 210 L=L+1
      IF(L.GE.KUP) GO TO 215
      ERR=GEE(L,HZ)
      FRR - (ERP-DES(L)) *WT(L)
      DTEMP=HUT#EPR-COMP
      IF (DTEMP.LE.0.0) GO TO 215
      COMP=NUT+ERR
      GO TO 210
 215 IEXT(J)=L-1
      J=J+1
      KLOW=L-1
      JCHNGE=JCHNGE+1
      GO TO 200
 220 L=L-1
      WRITE (5, 789)
 789 FORMAT(' RENEZ CHECKPOINT 3')
 225 L=L-1
      IF(L.LE.KLOW) GO TO 250
      URITE (5,753)
 753 FORMAT(' JUMP TO GEE')
      ERR=GEE(L.NZ)
      WRITE (5, 6432)
6432 FORMAT(' COME BACK FROM GEE')
      ERP=(ERR-DES(L))#WT(L)
      DTEMP=NUTHERR-COMP
      IF(DTEMP.GT.0.0) GO TO 230
      IF(JCHHGE.LE.0) GO TO:225
 230 COMP=HUT+ERR
      WRITE (5.975)
```

Program ASKFIR

```
97% FORMAT(" REMEZ CHECKPOINT 3.21)
235 L-L-1
     IF (L. LE.KLOW) GO TO 240
    ETT =GEE (L.HZ)
    EPR=(ERR-DES(LY)*UT(L)
    DIETE HUTKEPP-COMP
     IF (DTEMP.LG.0.0) GO TO 240
    COMP=HUTHERR
    GO TO 235
240 KLOW=TEXT(J)
    IENT(J)=L+1
    J=J+1
    JCHNGE=JCHNGE+1
    60 70 208
250 L= IEMT(J)+1
    IF (JCHNGE.GT.0) GO TO 215
255 L=L+1
    IF(L.GE.KUP) GD TO 260
    PRP=GEE(L,N2)
    ERR-(ERR-DES(L))*WT(L)
    DTEMP=NUTHERR-COMP
    IF (PTEMP.LE.0.0) GO TO 225
    COMP - HUTYERR
    GO TO 210
260 KLOW=IEXT(J)
    J=J+1
    GO TO 200
300 IF(J.GT.NZZ) GO TO 320
    IF (K1.GT. IEXT(1)) K1=IEXT(1)
    IF (KHZ.LT.IEXT(HZ)) KHZ=IEXT(NZ)
    NUT1=HUT
    WRITE (5,432)
432 FORTHIC' REMEZ CHECKPOINT 3.5')
    UH-=TUH
    L=0
    KUP=K1
    COMP=YHZ*(1.00001)
    LUCK=1
310 L=L+1
    IF(L.GE.KUP) GO TO 315
    ERP=GEE(L.NZ)
    ERR=(EPR -DES(L))*UT(L)
    DTENP=HUT#ERR-COMP
    IF (DTENP.LE.O.O) GO TO 310
    COMP = NUTAERR
    J=NZZ
    GO TO 210
315 LUCK=6
    GO TO 325
320 IF(LUCK.GT.9) GO TO 350
    IF (COMP.GT.YI) YIRCOMP
    K1=IEXTURZZ)
325 L=NGPID+1
    KLOWINZ
```

Program ASKFIR

```
NUT = - HUT1
      CONF = Y1 * (1.00001)
  330 L=L-1
      IF(L.LE.KLOWD 60 TO 340
      ERREGEE (L.NZ)
      EFR=(EPR-DES(L))#WT(L)
      DIEMF --- UT*ERR-COMP
      IF(DTamm.LE.0.0) 50 TO 330
      Jelizz
      COMP = NUTYERR
      LUCK=LUCK+10
      GO TO 235
  340 IF(LUCK.E0.6) GO TO 370
      DO 345 J=1.NFCNS
  345 IE'(T(MZZ-J) = IEXT(MZ-J)
      JEXT(D)FK1
      GO TO 100
  350 KN=IEXT(NZZ)
      DO 350 J=1,NFCNS
  360 IEXT(J) = [EXT(J+1)
      TEX. (HS) =KH
      UPITE(5,987)
  987 FURMAT(' REMEZ CHECKPOINT 4')
      GO TO 100
  370 IF (JCHNGE.GT.0) GO TO 100
C
      CALCULATION OF THE COEFFICIENTS OF THE BEST
      APPROMINATION USING THE INVERSE DISCRETE
C
£
      FOURIER TRANSFORM
  490 CONTINUE
      NM1=NFCNS-1
      FSH-1.0E-06
      GTENP-GRID(1)
      X(NZZ) = -2.0
      CN=D/MFCH3-1
      DELF=1.0/CH
      L=1
      KKK=0
      IF(EDGE(1), EQ. 0.0, AND. EDGE(2*NBANDS), EQ. 0.5) KKK=1
      IF (NFCHS.LE.3) KKK=1
      IF(KKK.EQ.1) GO TO 495
      DTEMP=DCOS(PI2#GRID(I))
      DHUM=DCOS(PI2*GRID(HGRID))
      CIUND-GIETO/O.S=AA
      BB=-(DTEMF+DNUM)/(DTEMP-DNUM)
  495 CONTINUE
      DO 430 J=1.NFCNS
      FT=(FLOAT(J-1))*DELF
      XT=DCOS(P12+FT)
      IF (EKK.E0.1) GO TO 418
      XT=(XT-BB)/AA
      ARCOSHATAN(XT/SORT(1.0-XT*XT))
      FT= ACOS (XT) /P12
```

Program ASKFIR

```
FT=.5
410 XE-11(L)
     IF(YI,GT,XE) GO TO 420
    IF(((E-XT).LT.FSH) GO TO 415
    L=L+1
    GO TO 410
415 9(J)=Y(L)
    G0 TO 423
420 IF ((XT-ME).LT.FSH) GO TO 415
    GRID(1)=FT
    A(J) = GFE(1.NZ)
425 CONTINUE
    IF(L.GT.1) L=L-1
430 CONTINUE
    GRID(1) =GTENP
    DDEN=PIS/CH
    DO 510 J=1.NFCNS
    DTEMP=0.0
    DNUM=(FLOAT(J-1))*DDEN
    IF (11111.LT.1) GO TO 505
    DO 500 K=1.NM1
500 DIETH-DIETH+A(K+1)*DCOS(DNUM*K)
505 DTENP=2.0*DTENP+A(1)
510 ALPHA(J) = DTEMP
    DO 550 J=2, HFCNS
550 ALPHA(J)=2#ALPHA(J)/CN
         1(1) =ALPHA(1)/CN
    IF (KKK.EQ.1) GO TO 545
    P(1)=2.0*ALPHA(NFCN5)*BB+ALPHA(NM1)
    P(2) = 2.0%AA%ALPHA(NECHS)
    Q(1): ALPHA (NFCNS-2) -ALPHA (NFCNS)
    DO 540 J=2.HH11
    IF (J.LT.NMI) GO TO 515
    AA=0.5%AA
    88=0.5%88
515 CONTINUE
    P(J+1):0.0
    DO 520 K=1.J
    A(K) =F(K)
520 P(K) = 2.0 * BB * A(K)
    P(2)=P(2)+A(1)*2.0*9A
    JM1=J-1
    DO 525 K=1.JM1
525 P(K)=P(K)+0(K)+AA!A(K+1)
    JP1=K+1
    DO 530 K=3,JP1
533 P(K)=P(K)+AAYA(K-1)
    IF (J.EQ.HM1) GO TO 540
    DO 535 K=1.J
535 Q(K)=-A(K)
    O(1) = O(1) + ALPHA(NFCHS-1-J)
540 CONTINUE
    DO 543 J=1.NFCHS
543 ALPHA(J)=P(J)
```

```
545 CONTINUE
      IF (HFCHS.GT.3) RETURN
      URITE(5.765)
  765 FORMATO PENEZ CHECKPOINT 5')
      ALPHA(NFC:15+1) =0.0
      ALPHA (NFCH3+2) =0.0
      WRITE(5.596)
  566 FORMAT(' LEAVING REMEZ')
      RETURN
      END
      DOUBLE PRECISION FUNCTION D(K,N,M)
      FUNCTION TO CALCULATE THE LAGRANGE INTERPOLATION COEFFICIENTS
      FOR USE IN THE FUNCTION GEE.
      COMMON PIZ.AD.DEV.X.Y.GRID.DES.WT.ALPHA.IEXT.NFCNS.NGRID
      DIMENSION IEXT(66).AD(66).ALPHA(66).X(66).Y(66)
      DIMENSION DES(1045).GRID(1045).WT(1045)
      DOUBLE PRECISION AD. DEV.X,Y
      DOUBLE PRECISION O
      DOUBLE PRECISION P12
      D=1.0
      D=X(K)
      DO 3 L=1.M
      DO 2 J=L, 11.11
      IF(Q-X(J))1,2,1
    1 D=2.0%D*(0~X(J))
    2 CONTINUE
   3 CONTINUE
     D=1.0/D
      RETURN
      END
      DOUBLE PRECISION FUNCTION GEE(K,N)
     FUNCTION TO EVALUATE THE FREQUENCY RESPONSE USING THE
С
      LAGRANGE INTERPOLATION FORMULA IN THE BARYCENTRIC FORM
      COMPION PIZ.AD. DEV. X. Y. GRID. DES. UT. ALPHA. IEXT. NFCNS. NGRID
      DIMENSION TEXT(66), AD(66), ALPHA(66), X(66), Y(66)
      DIMENSION DES(1045).GP10(1045).WT(1045)
      DOUBLE PRECISION P.C.D.XF
      DOTSLE PRECISION P12
     DOUBLE PRECISION OD. DEV. X.Y
     F=0.0
     XF=GPID(K)
     XF=DCOS(PI2:XF)
     D=0.0
     DO 12 J=1.d
     D=XF-X(J)
```

the second secon

```
WRITE (5.6666) XF.X(J)
     IF (C) 4,12,4
   4 CONTINUE
C6656 FORMAT(2F10.5)
     C=AD(J)/C
     D=D+C
   1 P=P+C*Y(J)
  12 CONTINUE
     IF(D) 33.66.33
  33 CONTINUE
    GEE=P/D
     GO TO 77
  66 CONTINUE
     GEE=.5
  77 CONTINUE
    RETURN
    END
     SUBPOUTINE OUCH
    WRITE (6.111)
 1' PROBABLE CAUSE IS HACHINE ROUNDING ERROR'.
    2' THE IMPULSE RESPONSE MAY BE CORRECT'.
    3' CHECK WITH A FREQUENCY RESPONSE')
    RETURN
    END
```

Program ASKFIR

APPENDIX E

Program Listing: DELAY13.FTN

This is a sample of a variable time delay filter. It has unity gain for all frequencies (up to frequencies near the sample frequency) and has a time delay which is progressively less for higher frequencies. It runs in an interactive mode on the pdp 11/45.

FORTPS:		 	1:32:49	26-677-78	PAGE	1
1.01		DIMENSION IBUF(6).I	RATE(2), IS E	3(2)		
	מטטטטטטטט	THIS PROGRAM SYNTMO A DIGITAL FILTER WA ALL EPODUCHCIES BUT LESS FOR HIGHER FRO TO PROVIDE SOME LES	ICH HAS UNI THE TIME I QUEHCIES.	TY GAIR AT BLAY IS THE IPSA IS		
2002 2003 2004 2005 2006	•	WRITE(5,00) FORMAT('S ENTER TIM PEAD (5,81) FPEQ FORMAT(F:0.7) IFREQ=FREQ	E PELAY NUL	TIPLIER-FLT.PT. ()		
7907 7888 7889 7018	С	 READ IN SAMPLE PEPI WRITE (5.30) FORMAT(1# ENTEP SAM READ (5.31) IRATE(2 FORMAT (16)	PLE PERIOD	SECONDS IN TYPELISECONDS—INTE	EGER	^)
	0 0 0	INITIALIZE FILTER				
9911 6912	С	Y=0.0 INITIALION LOGCCATO CALL ASLOCM (1.150)	RY PEPIPHER	AL CYSTEM		
2013	0	DESIGN TO TOTAL POR	CHANNEL F	OR DATEL 256		
8914	C	DESIGNATE POGISTER I IERN#7	FOR LPS11 F	LAG SET		
0 015	C C	PUT LPS11 R19 POUTD IRATE(1)≈3	E IN MILLI	STOO IN SAMPLING MODE	Ē	
0016	5 5 5 5	INITIATE SYNCHPONOUS CALL RTS. 1885.6.0.11		.1.130)		
6617	_	INDN=5				l
9918 9919 9920	10 15	CALL UNITED (TEFN) CALL CLRET (TETN) SIGNA-IBUF (TMC)				
0920	ε	SIGNA-IBUF (IND)()				

```
27:72:49
   TRAM IN-MUMS VOZ-MI
                                                  23-672-78
                                                                        PAGE 2
PELAY13.FTH
                ZTR: @LOSY WIR
         C
               SCALE IN VOLTS
0021
                IDATA=18390.*(SIGNA/2048.)-18800.
                BEGIN FILTET TOUTINE
         С
                IDIFF=IASSCIPAGE-ISATA)
3822
                The Talent Tripps
2023
                DIFF =1DI
 424
                DLFTP=21
1025
2026
                BLEEP=0.
                 ری=تدر
2027
                ~ ~ ny~
9838
                IDAYA2=ivada
6639
6039
                IDELAY=IFREO*IDELAY
0031
                IF(IDELAY.L.T.2) GO TO 9977
6032
                DO 9977 I=1. IDELAY
0933
               BLAP=1.
               WASTERS T MELAP)
               WASTE=C AP)
        С
         9977 CONTIN'S
0034
                CALL LPS11 LED DISPLAY ROUTINE
0035
                CALL LEDGIDGTA)
         C
               CALL POUTINE TO OUTPUT RESULT TO DATEL 256
         C
9136
               CALL IDAC(ICHOH-IDATA)
         C
                ODJUST POINTETT TOT 19811
         C
                PLO CLEAR HELT DUTTED FOR NEXT SAMPLE HILL DULE. PUT . 11
19337
         C
                111411 - 7Kfr
6038
         С
                INDEM STATUL REGISTER FOR PROPER INO
               AND TENNINE IF STATUS NOT COPRECT
6000
                IF (IMDX.GT.S) IMDM=5
149
                IF (153(2).GE.1) GO 70 10
1 441
               IF (188(1).19.0) on 70 35
29/42
               GO TO 10
00.43
         95
               CONTINUE
         С
               JE PEGGI WY GEGERES PRINT STATUS ON WAY OUT WHIT. (1992) ISB(1): ISB(2): ISA(2): ISATA: BUE(INXX
00 44
                UPN:37 (4112)
00.15
         200
               CONTINUE
        195
11046
40142
               END
PROGRAM SECTIONS
```

TORTRAM IELAY13	IV-PLUS .FTN	V02-51 /TR:BLOCKS/	11:32:49 29-APR-78 JR	PAGE 3
HAME	SIZE	Ē	ATTRIBUTES	
SCODE 1 SPDATA SIDATA SVARS STEMPS	000716 000020 000226 000076 000002	231 8 75 31 1	RW.I.CON.LCL RW.D.CON.LCL RW.D.CON.LCL RW.D.CON.LCL	
	PACE ALLO	OCATED = 8012 3	R64 049	

APPENDIX F

Program Listings: BAD.FTN, BAND.FTN, NINE9.FTN, DIFF32.FTN

These programs all execute FIR filters on the pdp 11/45.

TORTRAN SAD.FIN		JS V02-F1 ZTR:ELOCKSZWR	11:11:35	28-APR-78	FAGE	i
68B1	С	DIMENSION IBUF(6).	IRATE(2), IS	B(2).H(30).Y(60)		
	00000	THIS PROGRAM SYMTH LINEAR PHASE FIMIT WITH COEFFICIENTS EXCHANGE ALGORITHM	E IMPULSE R GENERATED U	ESPONSE FILTER		
	C C	IT IS A SPECIAL NO. FOR THE CASES WHER				
6892	Ç C C	SET ORDER OF FILTER TO NUMBER OF H COEM N=9		VEN OR ODD AND EOUAL		
	C C					
0093 0004	C	INITIALIZE DATA MA' DO 229 I=1," Y(I)=0.0	TRIX FOR FI	LTER		
ี ยอกร	299 C	CONT INCE				
6006 6607 6608 6009 6010	С	SET H COEFFICIENTS H(1)=54497945 H(2)=20219856 H(3)=59043792 H(4)=.32028612 H(5)=.55130921				
2 011	C C	INITIALIZE LABORATO CALL ASLSEN (1,158)		TAL SYSTEM		
5912	0	DESIGNATE OUTPUT DE ICHAN=O	OC CHANNEL I	FOR DATEL 256		
2313	с с	DESIGNATE PESISTER IEFH=T	FOR LPS11	FLAG SET		
1014		SPECIFY TIME DETWEE IRATE(2)+100	IN SAMPLES	IN MILLISECONDS		
e015	c c	PUT LPS11 PT POUT) IRATEX12#2	ME IN MILL	18300 'D SAMPLING MOD	Ē	
6016		CALCULATE SAMPLE M ST#FLOAT(IPATE:2))		DECONSIDES		

		05 V01-1: 11: (1:30) 20 10 (PAGE 2
1 AD.FTN		ZTD:ELGCKSZWR	1
-:317	C C C 90 C	INITIATE CYMCMRONDUG SOKULING CALL RTS(IBUF,6,8,149TE,144H.0,1,158)	
2018	C	INDX=5	
0019 4020 0021	10 15	CALL WAITER (JEEN) CALL CLRST(JEEN) SIGNA=IBUF(JHDX)	
0022	C C	SCALE IN VOLTS Y(1)=18888.*(SIGMA/28/8.3~18888.	
0023 0024 0025	C 544	BEGIN FILTER ROUTINE DO 544 I=1.N-1 Y(I+1)=Y(I) CONTINUE	
6025	C	SUM=0.D	
7826 8027 6028 6029		DO 20 I=1.N/2 TERM=H(I):(Y(I)+Y(N-I+()) SUN=SUM +TERM	
593 0 3931 5332	20	CONTINUE TERM=H(H/2+1)%Y(N/2+1) SUN=SUM*TERM	
3934	С	IDATA=SUN CALL LPSII LED DISPLAY POUTINE CALL LED(IDATA)	'
·335	C C	CALL POUTING TO OUTPUT PESULT TO DATEL 255 CALL IDAC((CHAN.IDATA))	
3.36	C C	ADJUST POINTERS FOR LES : AND CLEAR MULE BUTSER FOR NEXT SAMPLE CALL ADJUTC(IPUE.1)	
	Ĉ		
9307	С	IHDX=IRDN#1	
0938 0939 0940 9941	C	CHECK STATUS REGISTED FOR PROPER IZO AND TEPMINATE IF STATUS (OT CORRECT IF (INDX.GT.6) INDY=5 IF (ISB(2).GE.1) GO TO IF (ISB(1).NE.0) GO TO 31 GO TO 10	
6842	95 C	CORT INUE	
	Č	IF PROGRAM CHASHES PRIM CLATUS ON WAY OUT	

28-0PR-78 PASE 3 COSTRAN IV-PLUS V02-51 11:11:36 NTR:BLOCKS/WT LAD.FTN WRITE (5,200) ISB(1), ISB(2), IDATA, IBUF(INDX) ≥243 200 FORMAT(4112) 2, 14 .:345 CONTINUE 195 . 346 END PROGRAM SECTIONS NAME . SIZE ATTRIBUTES RW. L. COM. LCL 000732 237 \$CODE 1 RW. D. COM. LEL 000044 SPDATA 18 RW. D. COM. LOL RW. D. COM. LOC 000060 24 \$IDATA 000630 #VARS 204 STEMPS 000002 1 PW.D.CO.L.L. TOTAL SPACE ALLOCATED = 001710 484 .BAD =BAD

A CONTROL OF THE PROPERTY OF T

ADRTRAN BAHD.FTM	IV-PLUS VO2-51 11:14:24 28-APR-78 PAGE 1 ✓TR:8LOCKS∕WR	
ggg1	DIMENSION 18UF(5), 1RATE(2), 1SB(2), H(30), Y(60)	
	C THIS PROGRAM SYNTHESIZES AND EXECUTES C LINEAR PYRSE FINITE INPULSE RESPONSE FILTER C WITH COEFFICIENTS GENERATED USING THE REMAX C EXCHANGE ALGORITHM. C	
÷002	C SET ORDER OF FILTER CMUST BE EVEN FUR EQUIVA C TO NUMBER OF H COEFFICIENTS N=32 C	
4,733 4,584 4,705	C INITIALIZE DATA MATRIX FOR FILTER Y(1)=0.0 DO 295 I=1.N 299 CONTINUE	
1086 2007 1088 1098 1011 1012 1014 1015 1016 1017 1018 1018 1018 1018 1018 1018 1018	C SET H COEFFICIENTS H(1)=+0.57534121E+02 H(2)+0.99027100E+03 H(3)=0.75733545E+02 H(4)=+0.65141190E+02 H(5)=0.15900525E+01 H(6)=0.22951459E+02 H(7)=+0.10394067E+01 H(8)=0.71569560E+02 H(9)=+0.70557363E+01 H(10)=0.11260114E+01 H(11)=0.68233643E+01 H(12)=+0.10497223E+01 H(13)=0.85136133E+01 H(14)=+0.10034997E+00 H(15)=+0.29578577E+00 H(16)=0.3941917E+00 C INITIALIZE LABOFATORY PERIPHERAL SYSTEM CALL ASLSEN (1.158)	
72 3	C DESIGNATE OUTPUT INC CHANNEL FOR DATEL ITC ICHAN=0	
81 2 4	C DESIGNATE REGISTER FOR LPS11 FLAG SET IEFN=7	
: 325	C SPECIFY TIME BETWEEN SAMPLES IN MILLIPECT 3 IPHTS(2)=100 C PUT LPS11 PTS MEUTINE IN MILLIPECTAL STYLE TO MEDE	

FORTRAN SAMP.FT		_US V02-51 11:14:24 28-APR-78 ✓TR:BLOCKS∕WR	PAGE 2
3326	C	IRATE(1)=2	
£827	00 0000	CALCULATE SAMPLE INTERVAL IN SECONOTES ST=FLOAT(IRATE(2))/1000.	
r:028	C 98 C	INITIATE SYNCHRONOUS SAMPLING CALL RTS(IBUF,6,0,1RATE, IEFN,0,1,133)	
220	C	INDX=5	
r029	10	CALL WAITER (IEFN)	
+530 2031	10 15	CALL CLREF(IEFN)	
	10	SIGMA=IBUF(INDX)	
1502	ε	Ordini rodi (rubvi	
1	Č	SCALE IN VOLTS	
::333	L	Y(1)=10000.*(SIGMA/2048.)-10000.	
1.033	С	1(1)-100001**(310***) 100001	
1.	Č	BEGIN FILTER ROUTINE	
3834	C	DO 544 I=1.11-1	
1335		Y(I+1)*Y(I)	
1036	544 C	CONTINUE	
- 937	•	SUM=0.0	
£ 533		DO 20 1=1,11 7	
2139		TERM=H(I)**\((I)*Y(M-I*I))	
> 040		SUM=SUM +TEPM	
941	20	CONTINUE	
1542		IDATA-500	
	ε	CALL LPS11 LED DISPLAY ROUTINE	
8043		CALL LED (IDATA)	
	С		
}	C	CALL ROUTING TO OUTPUT RESULT TO DATEL 256	
2844		CALL IDAC (ICHAM, IDATA)	
	C		
	C	ADJUST POINTERS FOR LPS11	
1	C	AND CLEAR HALF BUFFER FOR NEXT SAMPLE	
145		CALL ATULAS(IBUF.1)	
1	C	,	
+345		INDX=IIIDX+1	
	C		
1	Ċ.	CHECK STATUS REGISTER FOR PROPER I/O	
	C	AND TEPMINATE IF STHIUS NOT CORRECT	
1:347		IF (INDM.GT.6) IMDX=5	
1 12 13		IF (ISB(2).GE.1) GO TO 16	
`43		IF (ISB(1).HE.Q) GO TO 95	
L			

```
FORTRAN IV-PLUS 102-51
                                  11:14:24
                                               28-877-78
                                                                    PAGE 3
                 > IP:BLOCKS/WIT
BGHD.FTN
              gri 10 10
2050
              EL THUE
        95
+ 371
              IF I ROGRAM CHOWN'S PRINT STATUS ON WAY OUT
              L" (4 (5.200) (301), ISB(2), IDATA, IBUF (INDX)
..,52
              F (17(4112)
        200
8053
              t ... INUE
        195
5054
              £1'11
(355
FROGRAM SECTION".
                               ATTRIBUTES
            SIZE
NAME
                  45
                                 PW. I. CON. L.CL
       001045
SCOPE 1
                                 PW.D.CON.LCL
                  11.1
       000120
ATATOL
                  14
                                 PU.D.COH.LCL
51DATA
       000060
                                 FORD, COH.LCL
                  11.1
SVARS
       800630
                  ļ
MEHPS 000002
TOTAL SPACE ALLA ALT = 002161
                                  704
.T "ID=BAND
```

```
PAGE 1
FORTRAN IV-PLUS V02-51
                                  11:72:30
                                               28-678-78
MINES.FTH
                 /TR:ELOCKS/LR
1001
               DIMENSION IBUF(6), IRATE(2), ISB(2), H(30), Y(60)
        C
               THIS PROGRAM SYNTHESIZES AND CHUPUTES
        C
               LINEAR PHASE FINITE IMPULSE RESPONSE FILTER
        C
               WITH COEFFICIENTS GENERATED USING THE REMEZ
        ε
        С
               EXCHANGE ALGORITHM.
        C
               IT IS A SPELIAL MODIFICATION OF CASY. FTN
        C
               FOR THE CASES IMERS NEAR ODD INTEGER
        С
        C
        C
               SET ORDER OF FILTER (CAN BE EVEH CR ODD AND EQUAL
        C
               TO NUMBER OF H COEFFICIENTS
0002
               11=9
        C
        C
        C
               INITIALIZE DATA MATRIX FOR FILTEP
               DO 299 I=1.88
6003
0004
               Y(1) = 0.0
        299
2005
               CONTINUE
        C
               SET H COSFFICIENTS
        C
6006
               H(1) = -.541/07/945
6937
              H(2)=-.20319359
0003
               H(3)=-.5904370
6009
               H(4) = .32028811
0010
              H(5) = .53120921
        ε
        C
        C
               INITIONIZE LOCIPATORY PERIPHERAL SYSTEM
               COLL . TEN ( . ISB)
0911
        C
              DESIGNATE OUT " TO DAC PURNNEL FOR 14 TEL 255
        C
3812
               ICH9U: T
        С
              PUBLIC TO PEGICUER FOR LPS11 FLAG SET
        C
               IEFH= '
0013
        С
              WRITE (5.80)
9914
6015
           28 FORMAT(1 CUTOFF FREQ. IS 0.25 TIME SEMPLE FRED. 1)
9016
              WRITE (5.81)
2017
           81 FORMATO'S ENTER SAMPLE PERIOD IN MILLISECCHOS-INTEGER: ")
0018
              READ (5,82)
6019
           82 FORMAT (IS)
        С
              PUT LESIS RTS ROUTING IN MILLISECTED SAMPLING MODE
მმეგ
               18ATE(1)=2
        C
```

rukika NINE9.	_	LUS TT:-T:	FAGE 2
	C C	CAUSULATE SAMPLE INTITATE IN SECONORDS	
9021	·	ST=FLOAT(IRNTE(2))//ICC.	
1110 = 1	C	Grant Carrier Carrers Comments	
	č		
	C		
	C		
	C	INITIATE SYNCHRONOUS SAMPLING	
0022	90 C	CALE RTS(IBUF,6,0, IRATE, IEFN.0,1,198)	
J023	C	IMOM=5	
3023 3024	18	CALL WAITER (IEFH)	
0925	15	CALL CLREF (TETH)	
5036		SIGMR=IBUF(IN: I)	
	C	•	
	C	SCALE IN VOLTE	
9827	_	Y(1)=10000.*(SICH9/2043.)-10989.	
	C C	BEGIN FILTER ROUTINE	
£028	C	DO 544 I=1.N-1	
0029		Y(I+!)=Y(I)	
0030	544	CONTINUE	
	С		
0031		SUM=0.0	
1932		D0 37 1=1.N/2 TERM: *(I)*(YC)*YM-T+1)	
0033 .º34		SUM=TOO HIERO	
પુરુષ	20	Cuta wife	
าอิวิธ		TeRM=, (N/2+1) *Y(N/2+1)	
1837		SUH=SUNHTERM	
F838	_	IDPTA=SUM	
20.20	С	CALL LEST LED DISPLAY ROUTINE	
6839	ε	CALL LED(IDATA)	
	Č	CALL FOUTING TO OUTPUT RESULT TO DATEL 256	
0048	-	CALL ITAC(ICHAH, IPATA)	
	С		
	C	ADJUST FOINTERS FOR LPS11	
30.44	C	PUT TO THE HALF BUFFER FOR MEXT SAMPLE	
11041	С	COLL IN LINGERS (1)	
0042	C	107 (A) (A)	
	ε	•	
	Č	C' TO TOTAL TOTAL TOR FOR PROPER IND	
	C	AND RESUMEN THE CAMUS NOT COPRECT	
2943		IF (INTN.GT.6) INDN=5	
#044 1045		IF (198(2),GE.1) GO TO 19	
10.45		IF (ISP(1).HE.O) GO TO 95	

```
11:32:30
                                                                        PAGE 3
STRIRAN IV-PLUS V02-51
                                                 28-892-78
               /TP:8LOCKS/WR
SIMES.FTIL
               G0 T0 10
55.16
               DI 17.2
        95
. 247
        ε
               IS ENDWHAM CLOSMES PRINT STATUS ON WAY OUT COLORS (1000) 100(1). ISB(2). IDATA, IBUS(INDM)
0248
        500
19.19
0050
         195
9051
PROGRAM SECTIONS
3Men
             SIZE
                                   ATTRIBUTES
TODE1 001004
                   258
                                   RULTICONLLCL
                   18
73
                                    RW. D. CCN. LCL
377 3TA
        000044
        500503
SIDATA
                                   RW.D.COH.LCL
        009630
                   20.
                                   PW.D.CO.L.LCL
$1/865
STEMPS CODOUS
                   1
                                   RW.D.CCH.LCL
TOTAL SPACE ALLOCATED = 002124 554
PEMINEE CONTIN
```

			-
FORTRAN SIPEWE.		\text{US V02-51} 11:33:16 27-\text{-73}	PAGE 1
7381	С	DIMETRICH IBUF(6). IRATE(2 ISS I (38).Y(60)	
	00000	THIS PROGRAM SYNTHESIDES AND E SOUTES LINEAR PHASE FINITE INDUSE PETRO TE FILTER WITH COOFFICIENTS GENERATED USS I THE REMEZ EXCHANGE RESOUTEMM.	
8002	c c	SET ORDER OF FILTER (MUST BE ETEN 共和 EQUAL TO NUMBER OF H COEFFICIENTS N=32	
0003 0004 8005	C C 299 C	INITIALIZE DATA MATRIX FOR FILTER Y(I)=0.0 DO 299 I=1.N CONTINUE	
. 0006 0007 0008 0009 0011 0012 0013 0014 0015 0016 0017 0018 1019 0020	cc	SET M CORPTICIENTS H(1)=+0.17134121E-02 H(2)>0.9517/199E-03 H(3)>0.75/33545E-02 M(1)=+0.60 W1503+00 W10050W1725 W1005-02 H(7)=+0.101 W105050E-13 H(9)=+0.396577738+01 H(10)=0.112501145-11 H(11)=0.662336435-11 H(12)=+0.101472311- H(13)=0.851051378 W1 H(14)=+0.102349075 W1 H(15)=+0.095753770 W1 H(16)=0.304 S172 UM H(16)=0.30550 S172 UM H(16)=0.30550 S172 UM H(16)=0.30550 S172 UM H(16)=0.30550 S172 UM H(16)=0.304 S172 UM H(16)=0.30550 S172 UM H(16)=0.3050 S172 UM H(16)=0.3	
0023	C C	DESIGNATE OUTF, 1000 CHANNEL FOT 1-TEL 256 ICHAN=0	
0924	c c	PLSIGNATE REGISTER FOR LPSI: FLFT RETITED IEFN=7	
1925	c c	SPECIFY TIME BETWEEN SAMPLED I TOLLIFETENDS IRATE(C)=100 PUT LPS11 RTS ROUTINE IN MIDLIFET, I FEMFLING MO	חבי
	Ç	THE GLOTT RESULTED HER THE FOUND OF THE FIG.	L

```
11:33:15
                                                               88-617-78
    FIREN IN-BUUS NOS-CO
                                                                                           PAGE 2
                    ALBERT COLO
   1:433.FTN
                    IRATE * /
 ₹ 26
           C
           C
                                       TUT DESTUDING IN SECRECADES
                    CALCUL 1
ST=FL0
           C
 12.27
           C
           С
           С
           C
                    INITIATE A STORY CONTLING
           С
                    CALL = "
  าปุ่ย
           90
  1129
                    INDM=3
                   CALL OF THE TERM)
CALL DITTO DEFIN
SIGNER OF THE
 . 0.30
           16
 . j 1
           15
 .032
           C
                   SCALF
           C
                                      11519/2049.0-19909.
0003
                   YCL
           C
                   BEGI
           C
 374
                   ng ell
 1.55
                   Y(1+1 =
                    00:171
  156
          544
           C
  137
                   SUN1=0.3
DO 27 1-1
.33
.330
                                     114,(4)-1410)
                   TETITET .
3 %
3 H
                   COST. IT
          20
 1.12
                                    FU DISPLAY ROUTINE
                  CALL Lan
          С
 0.13
                  CALL II
          C
                                   E TO CUTRUT PESULT TO DATEL 256 (FRM. IDATE)
                  CALL FT 1
          C
3 54
                  CALL
          ε
                  ADJUST 1 TOPE FOR LPS11
AND CL100 - F EVAFOR FOR NEXT SAMPLE
COLL - TOPE FOR LPS11
          С
          C
10 15
                  COLL
          C
. 113
                  It!!! " = "
          С
                  CHECK FI

OND TEXT

IF CIT

IF CIT

IF CIT
                                THE REGISTER FOR PROPER INC. ATT IF STATUS NOT COSTECT
          £
117
                               7 7 100/55
1 110/55
2 110/51 70 10
1 110/61 70 11
 110
```

A SOCIAL SOCIAL

PAGE 3 11:37:46 28-922-78 TORTPAN IV-PLUS VOO-DI /TR:BLOCKS/UR 915532.FTH GO TO 10 0050 9051 95 CONTINUE С IF PROGRAM CRASHES PRINT STATUS ON WAY OUT WRITE (5,200) ISB(1).19B(2), IDATA, 18UF(INDX) 9952 FORMAT (4112) 200 0053 CONTINUE 195 0054 END 0055 PROGRAM SECTIONS **ATTRIBUTES** NAME SIZE RW. I. CON. LCL \$CODE 1 001046 275 RW. D. COH. LCL 000120 40 5PDATA RW.D.COH.LCL \$IDATA 000060 24 RW.D.CON.LCL **SYARS** 000630 204 RW. D. COH. LCL SPM3T2 000002 1 TOTAL SPACE ALLOCATED = 002100 544 DIFF32=DIFF32

APPENDIX G

Program Listings: CASE8.FTN, CASE8F.FTN, HONEYF.FTN, and BUTTER.FTN

These programs all execute IIR filters on the pdp 11/45 with coefficients \cdot from the MAS/FIL program.

```
PAST !
 TITRAN IV-FLUE VO2-51
                                      11:32:12
                                                    28-AFR-78
:3 78.FTN
                  /TR:SLOCYS/LR
                DIMENSION IDUF(5). IPPTE(2), ISB(2), H(20), Y(20), X(20), 5(20)
3091
         C
         C
                THIS PROGRAM SYNTHESIZES AND EXECUTES
         C
                AN INFINITE IMPULSE RESPONSE FILTER WITH COEFFICIENTS
                GENERATED BY THE MACRIL PROGRAM. THE FILTERING LOCALS FOR THE CASE UNITE THERE IS ONLY ONE NON-PROURSIVE WEIGHT AND FOUR PROMITIVE WEIGHTS.
         C
         C
         C
         C
                N IS THE NUMBER OF RECURSIVE WEIGHTS
         C
5092
                N=8
         C
         C
         С
                INITIALIZE DATA MATRIX FOR FILTER
                DC 299 I=1.H
คถถส
2384
                Y(1) = 0.0
                X(D=0.9
₹005
         299
                EUHITHOD
8996
         С
                SET H COEFFICIENTS
7307
                P(1) = 7.4913016
                H(2)=-24.070298
Age of
0009
                H(3) = 44.926980
                H(4) = -52.639065
0910
                H(5) = 39.645219
£311
                H(6) =-18.74-1994
6012
                H(7)= 5.0035574
6013
                H(8)= -.82 115
6014
         C
         С
         C
                SET G COEFFICITIT
8915
                G(0)= .8814870 31
2016
                G(1) = -.0087154355
2017
                G(2) = .023574271
                G(3)=-.039814594
1018
1919
                G(4) = .643916724
4929
                G(5)=G(3)
:021
                G(6) =G(3)
9002
                G(7) = G(1)
9923
                G(8) = G(8)
         C
                INITIALIZE LABORATORY PERIPHERAL SYSTEM
         С
1004
                CALL ACESEN (1,158)
         C
                DESIGNATE CUIPUT DAG CHANNEL FOR DATEL 255
         £
. .25
                ICHAH-0
         C
```

```
29~878-78
FINTRAN IV-PLUS V02-T1
                                    11:32:12
                                                                        PASE 2
                  ZTR:ELOC TOPIC
CASES.FTH
         C
                DESIGNATE RESISTED FOR LPS11 FLAS SET
         ε
7.23
                IEF!!=7
         C
         С
         С.
                READ IN SAMPLE PERIOD IN MILLISECONDS
6027
                WRITE (5,38)
3028
            30 FORMAT( SENTER SAMPLE PERIOD IN SECONDS-INTEGER
                                                                        -)
2029
                READ (5,31) IRATE(2)
0000
            31 FORMAT (16)
         С
                PUT LPS11 RTS ROUTELT IN SECONDS SAMPLING MODE
         C
1881
                IRATE(1)=3
         ε
         С
         C
         C
-232
         90
                CALL RTS(IBUF.6.0.IPATE.IEFN.0.1.ISB)
9/33
                IHDX=5
...34
                CALL WAITER (JEFN)
         10
+335
                CALL CLPEF CIEFIN
         15
                SIGNE-INDEANDER
J-035
         C
         C
                SCALE IN VOLTS
                X(0)=10090.~(SIGM9/2049.)-10090.
3037
         С
         C
278
                SUM=0.0
2033
               DO CO IFINE
TERM INVALID
(19.4g
0041
1143
1143
1144
                Spran - Attent
               0255
8957
         20
               111-
                        __ 1
- - 15
                              ----
. 45
                ٦
  47
               Si
            99 CU:1. ...
. :43
                               235 (75) 2)
 3.19
                SIME-SUL
:000
                Y(1) =5U"#6
                IDATA=5J8.% (CD)
1051
2052
               URITE (5.345) SUM. SUME. Y(1), TERM, TURM
           345 FORMAT (5919.3)
9953
         C
         C
               SAME PECUPSIVE TERMS
```

```
* UF TRAN IM-PLUS MO2-51
                                    11:32:12
                                                 23-828-78
                                                                       PAGE 3
FOR E8. FTN
                 ZTR:BLOCKSZWR
€∂54
               DO 544 I=0.N
               Y(I+2)=Y(I+1)
0055
               X(I+D) =X(I)
6056
2057
           544 CONTINUE
         ε
               CALL LESTI LED DISTLAY ROUTINE
         C
               CALL LEDGIDATA)
2058
         С
               CALL ROUTING TO OUTSUIT PESULT TO DATEL 256
         С
               DOLL IDE: FIGURY, TRETTO)
2053
         C
               ADDIST FORTITIERS FOR LPS11
AND CLECOUNTY OF THE FOR MENT SAMPLE
OF LOAD LOCATION
0950
                0051
         С
                            TANDUSTER FOR THORES IND
               CHECK T
         С
                                 STATUS "OF CORPECT
3952
               IF CIR
               IF (ISE-21.6%.) 7 79 19
5963
               IF (138(1).NE.0) 9 93 60 70 10
2054
0935
               DONT INUE
9966
         95
         C
               IF PROGRAM CRASHES PRINT STATUS ON MAY OUT
3057
               WRITE (5.200) 192(1). ISB(2), IDATA, IBUF(INDX)
0958
         200
               F0PNAT(4112)
9089
         195
               CONTINUE
6970
               EHD
FROGRAM SECTIONS
                                   ATTRIBUTES
 NAME
             SIZE
SCORET
        001330
                   364
                                   RW. I. CON. LCL
SPDATA
        000104
                   34
                                   RW.D.COH.LCL
#IDATA
        000150
                    53
                                   RW. D. COH. LCL
                                   RW. D. CON. LCL
WARS
         000566
                   137
TOTAL SPACE ALLOCATED = 002372
                                    637
.CASE8=CASE8
```

```
TIRTRAN IV-PLUS VOZ-5:
                                   11:13:18
                                                23-APR-78
                                                                     PAGE 1
CASESF.FTN
                 /TR:ELOCKS/UR
               DIMENSION IBUF (6), IPATE (2), IS3(2), H(20), Y(20), X(20), G(20)
0001
        C
               THIS PROGRAM SYNTHESIZES AND EXECUTES
        C
        С
               AN INFINITE IMPULSE PESPONSE FILTER WITH COEFFICIENTS
               GEMERATED BY THE MACRIL PROGRAM. THE FILTERING LOOP
        ε
        С
               ID FOR THE CASE MARPH THERE IS ONLY ONE NON-RECURSIVE
        С
               WEIGHT AND FOUR RECUPSIVE WEIGHTS.
        C
        С
               N IS THE NUMBER OF RECURSIVE WEIGHTS
         C
               N=8
0092
        C
         C
               INITIALIZE DATA MATRIX FOR FILTER
0003
               DO 299 I=1.N
               Y(I)=0.0
0004
               X(1) = 0.0
0005
         299
               CONTINUE
೯೨೦६
         С
               SET H COEFFICIENTS
         C
9907
               H(1) = 7.4013016
               H(2)=-24.070098
6068
               H(3) = 44.926980
8003
               H(4)=-52.639065
8010
6911
               H(5) = 39.645219
6012
               H(6) = -18.744994
               H(7) = 5.0865574
5813
               H(8)= -.60660115
2014
        C
        C
        C
               SET G COEFFICIENTS
               G(0) = .0014977361
2915
               G(1)=-.808715:355
6916
               G(2)= .827574271
0017
0118
               G(3)=-.030810394
               G(.0) = .048915724
0019
R220
               8(5)=6(3)
0021
               G(6) = G(2)
8032
               G(7) =G(1)
               G(8) = G(8)
: 323
         €
               INITIALITY LAPSPATORY PERIPHERAL SYSTEM
         C
6834
               CALL ASUMEN (1.15B)
         C
               DESIGNATE OUTPUT DAG CHANNEL FOR DATEL 256
         C
               ICHAH=0
6825
         C
```

The second of th

```
11:13:18
                                                                    PAGE 2
WRTRAN IV-PLUS V02-51
                                               23-922-78
COSESF.FTN
                 /TR:BLOCKS/WR
        E
        С
               DESIGNATE REGISTER FOR LPSI1 FLOG SET
3026
               IEFN=7
        C
        C
               READ IN SAMPLE PERIOD IN MILLISECONDS
               WRITE (5,30)
0027
            30 FORMAT('SENTER SAMPLE PERIOD IN MILLISECONDS-INTEGER
9928
               READ (5,31) IRATE(2)
9929
0030
            31 FORMAT (15)
        C
        C
               PUT LPS11 RTS ROUTINE IN MILLISECONDS SAMPLING MODE
0031
               IRATE(1)=2
        C
        C
        C
        С
0032
        90
               CALL RTS(IBUF.6,0, IRATE, IEFILO, 1, ISB)
0033
               INDX=5
               CALL WRITER (IEFN)
6834
        10
               CALL CLREF (IEFN)
6935
        15
0036
               SIGMA=IBU% (INDX)
        C
               SCALE IN YOUTS
        С
               X(0)=10000.*(SIGNA/2048.)-10000.
0037
        C
        С
               SUM=0.0
0038
               N.1=1 PS CO
2039
               TERM=H(I)*Y(I)
0040
6041
               SUM-SUM +TERM
        20
               CONTINUE
9943
0043
               SUME=0.0
6944
               1111=(11/2)-1
2045
               DO 99 I=0.NN
9846
               TURM=G(1)*(X(1)+X(N-1))
0047
               SUME = SUME+TURN
0048
            99 CONTINUE
0543
               SUNE =SULE+GUL/G)*X(N/2)
0850
               Y(1)=5UN#SUNE
9951
               IDATA=500.%Y(1)
0053
               URITE (5,345) SUM, SUME, Y(1), TERM, TUPM
0033
           345 FORMAT (5F10.3)
        r.
        C
               SAME DECURSING TERMS
```

```
CATEAN IN-PLUS VO2-51
                                  11:13:13
                                               23-455-55
                                                                    POSE 3
CASESF.FTN
               /TR:BLOCKS/WR
              DO 544 1=0.H
3954
               Y(I+2)=Y(I+1)
1055
: 056
              X(I+I)=X(I)
1157
          544 CONTINUE
        C
        С
               CALL LPS11 LED DISPLAY POUTINE
               CALL LED (IDATA)
8058
        С
        C
               CALL ROUTINE TO OUTPUT RESULT TO DATEL 255
               CALL IDAC (ICHAN, IDATA)
0059
        C
        Č
               ADJUST POINTERS FOR LPS11
        C
              PHD CLEAR HALF BUFFER FOR NEXT SAMPLE
               CALL ADJLP3 (ISUF.1)
0060
        C
              INDX#IRDN#1
0061
        С
        C
              CHECK STIMUS REGISTER FOR PROPER IND
        C
              AND TERMINATE IF STATUS NOT CORRECT
8052
               IF CINDM.GT.60 INDN=S
               !F (ISB(2).GE.1) SD TO 10
9963
              IF (199(1).NE.0) GO TO 95
0084
0085
              GO TO 19
        95
              CONTINUE
3866
        С
               IF PROCESS CRASHED PRINT STATUS ON WAY OUT
              WRITE (5,200) 199(1).190(0).190TA, IBUF(INDX)
6067
              f (3)(aT(4)112)
        200
9968
8369
        195
              CONTINUE
2070
              END
PPOGRAM SECTIONS
                                 ATTP IBUTES
MALIE
            SILE
$10DE1 001330
                  364
                                 RW. I, COH. LCL
$20ATA 000104
                                 RW. D. COHLL CL
                  34
                                 RIJ.D. COH.LCL
SIDATA
        000154
                  54
        999566
                                 RW. M. CON. LCL
$ 1378
                  187
TOTAL SPACE ALLOCATED = 002376
                                 639
.CASESF = CASEAF
```

· 05/14/0

FORTRAN MEMEYE.		US V92-51 11:14:39 28-8PR-78 PAGE 1
2051	_	DIMENSION 10UF(6). IRATE(2). ISB(2). H(30). Y(60)
		THIS PROGRAM SYNTHESIZED AND EXECUTES AN INFINITE IMPULSE POSPONSE CULTER WITH COSFFICIENTS GENERATED BY THE MACFIL PROGRAM. THE FILTERING LOOP IS FOR THE CASE WHERE THERE IS ONLY ONE NON-RECURSIVE WEIGHT AND FOUR RECUFBIVE WEIGHTS.
6082	C C	N IS THE NUMBER OF RECUPSIVE WEIGHTS N=5
9903 9904 8905	C C C C	INITIALIZE DATA MATRIX FOR FILTER DO 299 I=1.N Y(I)=0.0 CONTINUE
1085 8907 1088 889 8818	č	SET H COEFFICIENTS H(1)=.52474611 H(2)=+.68504353 H(3)=.30011018 H(4)=17431219 H(5)=.63304264
3911	C C	SET G COEFFICIENT G=.52271373
6012	0	INITIALIZE LABOPATORY PERIFHERAL SYSTEM CALL ASLSLN (1.158)
0013	0	DESIGNATE CUTTUT DAC CHANNEL FOR DATEL 256 ICHAN-O
0014	C C	DESIGNATE REGISTER FOR LPS11 FLAG SET IEFN=7
9915 2015 7917 2018	31 C	READ IN SAMPLE PERIOD IN MILLISECONDS WRITE (5.30) FORMAT (5.31) IPAGE(2) FORMAT (16)
0019	C	THUT LPS11 RTS FOUTINE IN SECONDS SAMPLING MODE IRATE(1)=2

```
FORTRAY IN-PLUS VO2-5:
                                     11:14:39
                                                  29-877-78
                                                                        PAGE 2
   WEYF .FTH
                   ZTR: ELOCKE AND
           ε
           ε
           С
           С
  6950
          90
                 CALL RTS (JAUF, 6.0, IRATE, IEFH, 0.1, ISB)
  6921
                 INDX≈5
  0022
           10
                 CALL WHITER (ICEN)
  0323
          15
                 CHILL CLUEE (ICEN)
 0024
                 SIGMA=IBUF(INDDD
          C
          С
                 SCALE IN VOLTS
 0025
                X=10000.*(SIGNA/2048.)-10000.
          С
          ε
 0026
                SUI1=0.0
 0027
                DO 20 I=1.N
 0028
                TERI1=H(1)*Y(1)
 €829
                SUM=SUM +TERM
 0030
          20
                CONTINUE
 0031
                Y(1) =SUM+G+Y
 0032
                IDOTA=Y(1)
         C
         C
                SAVE PECURSIVE TERMS
 0033
                PO 544 I=1,1-1
 3034
                Y(I+1) = Y(1)
 0035
           544 CONTINUE
         C
         ε
                CALL LO " LED DISPLAY ROUTINE
2036
                CALL Lie (II TA)
         С
               CALL ROUTINE TO OUTPUT PESULT TO PATEL 256
         ε
2037
               CALL IPPOSICHAM, ITATA)
         С
         C
               ADJUST PILLITERY FOR LESIT
               AND CLERK HALF BUFFER FOR PENT COMPLE
         C
9038
               CALL ANULPSCIEUS, 1)
         \mathfrak{C}
6639
               INDX=INDX+1
        C
        С
               CHECK STATUS RECISTSP FOR FRORET IND
               AND TECHINATE IN STATUS HOL COLUECT
        C
3340
               IF (IMDILIGH.S) HELES
£541
               IF (198(3).9E.1) 50 TO 18
9942
               IF (ISB(1).NE.A: 60 70 95
€9-13
               60 TO 10
60 1.1
        95
              CONTINUE
```

CAIRAN IV-PLUS VOD-TI 28-270-78 11:14:29 FAGE 3 HUNEYF.FTH /TR:SLOCKS/WR C C IF PROGPAIL CRASHES PRINT STATUS ON WAY OUT 0045 URITE (5,200) ISB(1), ISB(2), IDATA, IBUF(INDX) 3946 200 FQRMAT(4112) 0847 195 CONTINUE 0048 EHD PROGRAM SECTIONS NAME ATTR IBUTES SIZE RW. I. CON. LCL SCODE 1 009740 240 ATACS: 880850 20 RW. D. COH, LCL 51 RULD, CONLLCL **\$IDATA** 000146 SVARS 000634 206 RW. D. CON, LCL 0000012 STEMPS RW. D. CON.LCL 1 TOTAL SPACE ALLOCATED = 002014 516 .HONEYF = HONEYF

FORTRAN BUTTER.	–	US V82-51 11:28:55 28-A ✓TR:@LOCKS∕W?	PR-78 PAGE	1
0001		DIMENSION ISUF(6). IPATE(2). ISB(2).	H(30),Y(60)	
Anna radio, description de la constanta de la	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	THIS PROGRAM SYNTHESIZES AND EXECUTAN INFINITE IMPULSE RESPONSE FILTER GENERATED BY THE MACFIL PROGRAM. IS FOR THE CASE WHERE THEPE IS ONLINEIGHT AND FOUR RECURSIVE WEIGHTS.	R WITH COEFFICIENTS THE FILTERING LOOP	
0092	C C C	N IS THE NUMBER OF RECURSIVE WEIGH N≈5	TS	
2293 2294 2005	C C 299	INITIALIZE DATA MATRIX FOR FILTER DU 299 I=1.H Y(I)=0.0 CONTINUE		
0 0 0 0 0 0	C C	SET H COEFFICIENTS H(1)=.92476581 H(2)=68534953 H(3)=.30671978 H(4)=77488319 H(5)=.05301354		
7	C C	SET G COUCTO THAT G=.5220 CTT;		
. 121 2	0	INITIALIZE OF TOSTOTY PERIPHERAL S CALL ALLSUB + 158)	YSTEM	
1 1233	C	DESIGNATE OUTPUT DAC CHANNEL FOR DICHAN=0	ATEL 256	
	0	DESIGNATE REGISTER FOR LPS11 FLAG	SET	
22.5	C C	SPECIFY TIME RETWEEN SAMPLES IN MIRATE(C)=1	LLISECONDS	
e Portugal	c c	PUT LP311 PTS ROUTINE IN MILLISECON IRATE(1)=3	ND SAMPLING MODE	
	C C	CALCULATE SAMPLE INTERVAL IN SECOND ST#FLOAT(IFATE(2))/1888.	C?N%	

```
: GRIRAN IV-PLUS 1902-51
                                  11:28:25
                                               26-62R-78
                                                                     PSGE 2
                 /TP:ELCCKE/UT
UTTER FIN
        С
3018
        90
              CALL RTS(ISUF.6.0, IRATE, IEFN,0,1, ISB)
3919
               INDX=5
               CALL WAITER (IEFN)
5028
        10
        15-
               CALL CLREF (IEFN)
0021
8022
             - SIGNA=IBUF (INDX)
        C
        C
               SCALE IN VOLTS
0023
               X=10000.*($1509/2048.)-10000.
        C
        ε
0024
               SUM=0.0
8025
               DO 20 I=1.8
8926
               TERM=H(I)*Y(I)
2027
               SUM-SUM +TERM
0028
        20
               CONTINUE
6029
               Y(1) = TERM+S Y
0030
               IDATA=Y(1)
        C
               SAME RECURSIVE TERMS
        С
3231
               DO 544 I=1.1:-1
6032
               YCI4DEYCD
          544 CONTINUE
7033
        C
        C
               CALL LPS11 LED DISPLAY POUTINE
• 334
               CALL LED (IDATA)
        C
               CALL ROUTH'S TO OUTPUT FESULT TO DATEL 256
        ι
.935
               CALL IDAC (ISSEM, IDATA)
        \mathfrak{c}
               ADJUST POINTERS FOR LPS11
        C
               AND CLIAR? HALF BUFFER FOR NEXT SAIPLE
        ε
8036
               CPL! ADJLPS(19UF.1)
        ε
3037
               IHDK=INDK+I
        C
        С
               CHECK STATUS FEGISTER FOR PROPER 1/0
        C
               AND TEPMINATE IF STATUS NOT CORPECT
9039
               IF (INDX.GT.6) INDX=5
6939
               IF (ISB(2).GE.1) GO TO 10
1349
               IF (ISB(1).ME.0) CO TO 95
7041
               60 TO 10
× 12
               CONTINUE
        95
        С
        C
               IF PROSPAIL CROSPES PRINT STATUS ON WAY OUT
```

FORTRAM IV-PLUS V02-51 11:28:55 28-APR-78 PAGE 3 /TR:BLOCKS/WR CUTTER . FTH WRITE (5,200) ISB(1), 193(2), IDATA, ISUF(INDX) ~043 .044 280 FORMAT(4112) CONTINUE 3345 195 €346 END PROGRAM SECTIONS SIZE **ATTRIBUTES** MAME 000716 231 RW. I.COH.LCL SCODE 1 000050 20 RW. D. COH. LCL SPDATA RW.D.CSH.LCL 000060 24 SIDSTA 000640 208 RW.D.COH.LCL SYARS STEMPS 000002 RW.D.CON,LCL 1 TOTAL SPACE ALLOCATED = 001710 484 .BUTTER=BUTTER

APPENDIX H

The Datel 256 Driver Program: IDAC.MAC

The following assembly language program IDAC takes values from the filter execution programs (EASY, JUNK, and NINE) and writes the results to a digital to analog channel of the Datel 256 system. The call is:

CALL IDAC (ICHAN, IDATA)

where ICHAN is the channel number (0 to 15) and IDATA is the integer data (-2048 to +2048). The channel used now is 0, and the output pins are 12 = high and 11 = common. The channel or channels are addressed in the random mode.

.TITLE IDAC GET ARGUMENT FOR DAC (R5)+,R1 IDAC:: IOV ; PUT IN RANDOM MODE **EVC(1**) **#20,0**#160010 SPECIFY CHANNEL 1 YOM @(R5)+,@#160012 ; WRITE VALUE TO DAC. START DAC @(R5)+,@#160C14 **V011** PC RTS .END

Program IDAC

The original program for the Datel 256 system is shown here only for the record. In order to do what needed to be done, the Datel had to be programmed to constantly switch between the block mode for the synchronous inputs and the register mode for the asynchronous outputs. For this reason, this plan was abandoned and the LPS11 system was used instead. The Datel 256 system is a good general purpose piece of equipment, but unfortunately, the particular interface to the pdp 11/45 is not particularly suitable for the digital filter task. At the time the Datel 256 system was originally purchased to work with the SEL810B or the HP2114B, it could not have been foreseen that its use in a closed loop system in conjunction with the pdp 11/45 would be so difficult.

However, since both the Datel 256 system and LPS11 system are available, it appears now that a suitable functional configuration can be obtained by using the LSP11 system with its ADC's and real-time clock for input, and the pdp 11/45 for processing, and the Datel 256 system for the DAC output. A signal flowchart of this configuration is shown in figure 4-1. The original code written to drive the Datel 256 system consisting of the following key instructions:

MOV #2000, R1 Load DMA memory start address into

register 1

MOV #1, R2 Load word count into register 2

MOV #60,0#760010 Put into block mode and load status register 2

MOV #1000, 0#760016 Put into block mode, and load starting

and final addresses

MOV R1, G#760012 Load memory address registers

NOV R2, @#760014 Load word count and start block

conversion

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.